Skip to main content
Log in

Silent echo-planar imaging for auditory FMRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Introduction

The effect of the acoustic scanner noise produced by gradient coil switching on the auditory evoked BOLD signal represents a well-known problem in auditory functional MRI (FMRI). In this paper, a new low-noise echo-planar imaging (EPI) sequence is presented that is optimized for auditory FMRI measurements.

Methods

The sequence produces a narrow-band acoustic frequency spectrum by using a sinusoidal readout echo train and a constant phase encoding gradient. This narrow band is adapted to the frequency response function of the MR scanner by varying the switching frequency of the sinusoidal readout gradient.

Results

Compared to a manufacturer-provided standard EPI sequence, the acoustic noise reduction amounts to up to 20 dBA. Using a simple block design paradigm contrasting presentation of a pure tone during ON blocks and “silence” (absence of the tone) during OFF blocks, the new low-noise sequence was evaluated and compared to the standard EPI sequence. Statistical parametric mapping (SPM) resulted in higher levels of significance of auditory activation for the low-noise sequence.

Discussion

These findings strongly suggest that the low-noise sequence may generate enhanced BOLD contrasts compared to the standard EPI sequences commonly used in FMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandettini PA, Jesmanowicz A, Van Kylen J, Birn RM, Hyde JS (1998) Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med 39: 410–416

    Article  PubMed  CAS  Google Scholar 

  2. Elliott MR, Bowtell RW, Morris PG (1999) The effect of scanner sound in visual, motor, and auditory functional MRI. Magn Reson 41: 1230–1235

    Article  CAS  Google Scholar 

  3. Brummett RE, Talbot JM, Charuhas P (1988) Potential hearing loss resulting from MR imaging. Radiology 169: 539–540

    PubMed  CAS  Google Scholar 

  4. Quirk ME, Letendre AJ, Ciottone RA, Lingley JF (1989) Anxiety in patients undergoing MR imaging. Radiology 170: 463–466

    PubMed  CAS  Google Scholar 

  5. Mansfield P, Glover PM, Beaumont J (1998) Sound generation in gradient coil structures for MRI. Magn Reson Med 39: 539–550

    Article  PubMed  CAS  Google Scholar 

  6. Edelstein WA, Hedeen RA, Mallozzi RP, El Hamamsy SA, Ackermann RA, Havens TJ (2002) Making MRI quieter. Magn Reson Imaging 20: 155–163

    Article  PubMed  Google Scholar 

  7. Schad LR, Bock M, Müller E, Lorenz WJ (1995) Echo planar imaging on a standard 1.5 Tesla imager. Z Med Phys 5: 205–207

    Google Scholar 

  8. Shellock FG, Ziarati M, Atkinson D, Chen DY (1998) Determination of gradient magnetic field induced acoustic noise associated with the use of Echo Planar and three-dimensional, fast spin Echo techniques. J Magn Reson Imaging 8: 1154–1157

    Article  PubMed  CAS  Google Scholar 

  9. Price DL, De Wilde JP, Papadaki AM, Curran JS, Kitney RI (2001) Investigation of acousic noise on 15 MRI scanners from 0.2T to 3T. J Magn Reson Imaging 13: 228–293

    Article  Google Scholar 

  10. Counter SA, Olofsson A, Grahn HF, Borg E (1997) MRI acoustic noise: sound pressure and frequency analysis. J Magn Reson Imaging 7: 606–611

    Article  PubMed  CAS  Google Scholar 

  11. Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW (2000) Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J Magn Reson Imaging 12: 157–163

    Article  PubMed  CAS  Google Scholar 

  12. Zwicker E, Fastl H (2001) Psychoacoustics. Facts and models, 2nd edn. Springer, Heidelberg

    Google Scholar 

  13. Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J (1998) Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex 8: 156–163

    Article  PubMed  CAS  Google Scholar 

  14. Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) Sparse temporal sampling in auditory fMRI. Hum Brain Mapp 7: 213–223

    Article  PubMed  CAS  Google Scholar 

  15. Ravicz ME, Melcher JR (2001) Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body. J Acoust Soc Am 109: 216–231

    Article  PubMed  CAS  Google Scholar 

  16. Mansfield P, Haywood B (2000) Principles of active acoustic control in gradient coil design. Magn Reson Mater Phy 10: 147–151

    CAS  Google Scholar 

  17. Cho ZH, Chung ST, Chung JY, Park SH, Kim JS, Moon CH, Hong IK (1998) A new silent magnetic resonance imaging using a rotating DC gradient. Magn Reson Imaging 39: 317–321

    CAS  Google Scholar 

  18. Katsunuma A, Takamori H, Sakakura Y, Hamamura Y, Ogo Y, Katayama R (2002) Quiet MRI with novel acoustic noise reduction. Magn Reson Mater Phys 13: 139–144

    Article  CAS  Google Scholar 

  19. Chambers J, Akeroyd MA, Summerfield AQ, Palmer AR (2001) Active control of the volume acquisition noise in functional magnetic resonance imaging: method and psychoacoustical evaluation. J Acoust Soc Am 110: 3041–3054

    Article  PubMed  CAS  Google Scholar 

  20. Hennel F, Girard F, Loenneker T (1999) Silent MRI with soft gradient pulses. Magn Reson Med 42: 6–10

    Article  PubMed  CAS  Google Scholar 

  21. Hennel F (2001) Fast spin echo and fast gradient echo MRI with low acoustic noise. J Magn Reson Imaging 13: 960–966

    Article  PubMed  CAS  Google Scholar 

  22. Tomasi DG, Ernst T (2003) Fast spin echo and fast gradient echo MRI with low acoustic noise. J Magn Reson Imaging 13: 960–966

    Google Scholar 

  23. Oesterle C, Hennel F, Hennig J (2001) Quiet imaging with interleaved spiral read-out. Magn Reson Imaging 19: 1333–1337

    Article  PubMed  CAS  Google Scholar 

  24. Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K (2006) Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. Neuroimage 29: 1013–1022

    Article  PubMed  Google Scholar 

  25. Hedeen RA, Edelstein WA (1997) Characterization and prediction of gradient acoustic noise in MR imagers. Magn Reson Med 37: 7–10

    Article  PubMed  CAS  Google Scholar 

  26. Schomberg H, Timmer J (1995) The gridding method for image reconstruction by Fourier transform. IEEE Trans Med Imaging 14: 597–607

    Article  Google Scholar 

  27. Sekihara K, Kohno H (1987) New reconstruction technique for echo-planar imaging to allow combined use of odd and even numbered echoes. Magn Reson Med 5: 485–491

    Article  PubMed  CAS  Google Scholar 

  28. Schmitt F, Stehling MK, Turner R (1998) Echo planar imaging—theory, thechnique and application. Springer, Heidelberg

    Google Scholar 

  29. O’Sullivan JD (1985) A fast sinc function gridding algorithm for Fourier inversion in computer tomography. IEEE Trans Med Imaging 4: 200–207

    Article  PubMed  CAS  Google Scholar 

  30. Egan JP, Hake HW (1950) On the masking pattern of a simple auditory stimulus. J Acoust Soc Am 22: 622–630

    Article  Google Scholar 

  31. Wegel RL, Lane CE (1924) The auditory masking of one sound by another and its probable relation to the dynamics of the inner ear. Phys Rev 23: 266–285

    Article  Google Scholar 

  32. Bornert P, Aldefeld B, Eggers H (2000) Reversed spiral MR imaging. Magn Reson Med 44: 479–484

    Article  PubMed  CAS  Google Scholar 

  33. Jakob PM, Schlaug G, Griswold M, Lovblad KO, Thomas R, Ives JR, Matheson JK, Edelman RR (1998) Functional burst imaging. Magn Reson Med 40: 614–621

    Article  PubMed  CAS  Google Scholar 

  34. Schwarzbauer C, Davis MH, Rodd JM, Johnsrude I (2006) Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI. Neuroimage 29: 774–782

    Article  PubMed  Google Scholar 

  35. Diesch E, Struve M, Rupp A, Ritter S, Hülse M, Flor H (2004) Enhancement of steady-state auditory evoked magnetic fields in tinnitus. Eur J Neurosci 19: 1093–1104

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schmitter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitter, S., Diesch, E., Amann, M. et al. Silent echo-planar imaging for auditory FMRI. Magn Reson Mater Phy 21, 317–325 (2008). https://doi.org/10.1007/s10334-008-0132-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0132-4

Keywords

Navigation