Skip to main content

Combining Electroencephalography and Functional Magnetic Resonance Imaging in Pain Research

  • Chapter
  • First Online:
EEG - fMRI
  • 1199 Accesses

Abstract

Numerous studies have used electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) to demonstrate that pain caused by noxious stimulation elicits a widespread array of brain responses. However, their functional significance remains heavily debated. A number of studies have attempted to simultaneously record EEG and fMRI responses to noxious stimuli, with the aim of combining the high temporal resolution of EEG with the high spatial resolution of fMRI, and thus define these responses more precisely. However, because EEG and fMRI do not sample necessarily the same neural activity, interpretation of these studies requires caution. This chapter (1) examines the general and practical issues related to the simultaneous collection of EEG and fMRI responses to noxious stimulation, (2) reviews the studies that have attempted to combine such recordings, and (3) illustrates how analysis of EEG data at the level of single-trials can be used to drive the analysis of simultaneously collected fMRI data, and how this EEG-informed blood oxygen level-dependent modelling approach can provide novel physiological information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239

    Article  CAS  Google Scholar 

  • Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484

    Article  Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871

    Article  CAS  Google Scholar 

  • Bagshaw AP, Warbrick T (2007) Single trial variability of EEG and fMRI responses to visual stimuli. Neuroimage 38:280–292

    Article  Google Scholar 

  • Bandettini PA, Kwong KK, Davis TL, Tootell RB, Wong EC, Fox PT, Belliveau JW, Weisskoff RM, Rosen BR (1997) Characterization of cerebral blood oxygenation and flow changes during prolonged brain activation. Hum Brain Mapp 5:93–109

    Article  CAS  Google Scholar 

  • Baumgartner U, Cruccu G, Iannetti GD, Treede RD (2005) Laser guns and hot plates. Pain 116:1–3

    Article  Google Scholar 

  • Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152

    Article  Google Scholar 

  • Bonmassar G, Hadjikhani N, Ives JR, Hinton D, Belliveau JW (2001) Influence of EEG electrodes on the BOLD fMRI signal. Hum Brain Mapp 14:108–115

    Article  CAS  Google Scholar 

  • Bromm B, Chen AC (1995) Brain electrical source analysis of laser evoked potentials in response to painful trigeminal nerve stimulation. Electroencephalogr Clin Neurophysiol 95:14–26

    Article  CAS  Google Scholar 

  • Carmon A, Mor J, Goldberg J (1976) Evoked cerebral responses to noxious thermal stimuli in humans. Exp Brain Res 25:103–107

    Article  CAS  Google Scholar 

  • Chen AC, Niddam DM, Arendt-Nielsen L (2001) Contact heat evoked potentials as a valid means to study nociceptive pathways in human subjects. Neurosci Lett 316:79–82

    Article  CAS  Google Scholar 

  • Christmann C, Ruf M, Braus DF, Flor H (2002) Simultaneous electroencephalography and functional magnetic resonance imaging of primary and secondary somatosensory cortex in humans after electrical stimulation. Neurosci Lett 333:69–73

    Article  CAS  Google Scholar 

  • Christmann C, Koeppe C, Braus DF, Ruf M, Flor H (2007) A simultaneous EEG-fMRI study of painful electric stimulation. Neuroimage 34:1428–1437

    Article  Google Scholar 

  • Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Event-related fMRI of pain: entering a new era in imaging pain. Neuroreport 9:3019–3023

    Article  CAS  Google Scholar 

  • De Keyser R, van den Broeke EN, Courtin A, Dufour A, Mouraux A (2018) Event-related brain potentials elicited by high-speed cooling of the skin: a robust and non-painful method to assess the spinothalamic system in humans. Clin Neurophysiol 129:1011–1019

    Article  Google Scholar 

  • Frot M, Mauguiere F (2003) Dual representation of pain in the operculo-insular cortex in humans. Brain 126:438–450

    Article  Google Scholar 

  • Garcia-Larrea L, Frot M, Valeriani M (2003) Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin 33:279–292

    Article  CAS  Google Scholar 

  • Garreffa G, Bianciardi M, Hagberg GE, Macaluso E, Marciani MG, Maraviglia B, Abbafati M, Carni M, Bruni I, Bianchi L (2004) Simultaneous EEG-fMRI acquisition: how far is it from being a standardized technique? Magn Reson Imaging 22:1445–1455

    Article  Google Scholar 

  • Greffrath W, Baumgartner U, Treede RD (2007) Peripheral and central components of habituation of heat pain perception and evoked potentials in humans. Pain 132:301–311

    Article  Google Scholar 

  • Hamandi K, Laufs H, Noth U, Carmichael DW, Duncan JS, Lemieux L (2008) BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage 39:608–618

    Article  Google Scholar 

  • Hu L, Mouraux A, Hu Y, Iannetti GD (2010) A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage 50(1):99–111. S105381190901297X. https://doi.org/10.1016/j.neuroimage.2009.12.010

  • Hu L, Liang M, Mouraux A, Wise RG, Hu Y, Iannetti GD (2011) Taking into account latency amplitude and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression. J Neurophysiol 106(6):3216–3229. https://doi.org/10.1152/jn.00220.2011

  • Hu L, Cai MM, Xiao P, Luo F, Iannetti GD (2014) Human brain responses to concomitant stimulation of Aδ and C nociceptors. J Neurosci 34(34):11439–11451. https://pubmed.ncbi.nlm.nih.gov/25143623/

  • Hu L, Zhang ZG, Mouraux A, Iannetti GD (2015) Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. Neuroimage 111:442–453

    Article  CAS  Google Scholar 

  • Iannetti GD, Mouraux A (2010) From the neuromatrix to the pain matrix (and back). Exp Brain Res 205:1–12

    Article  CAS  Google Scholar 

  • Iannetti GD, Leandri M, Truini A, Zambreanu L, Cruccu G, Tracey I (2004) Adelta nociceptor response to laser stimuli: selective effect of stimulus duration on skin temperature, brain potentials and pain perception. Clin Neurophysiol 115:2629–2637

    Article  CAS  Google Scholar 

  • Iannetti GD, Niazy RK, Wise RG, Jezzard P, Brooks JC, Zambreanu L, Vennart W, Matthews PM, Tracey I (2005a) Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. Neuroimage 28:708–719. https://pubmed.ncbi.nlm.nih.gov/16112589/

  • Iannetti GD, Zambreanu L, Cruccu G, Tracey I (2005b) Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience 131:199–208

    Article  CAS  Google Scholar 

  • Iannetti GD, Zambreanu L, Tracey I (2006) Similar nociceptive afferents mediate psychophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. J Physiol 577:235–248

    Article  CAS  Google Scholar 

  • Iannetti GD, Wise RG (2007) BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 25(6):978–988. https://pubmed.ncbi.nlm.nih.gov/17499469/

  • Iannetti G, Hughes NP, Lee MC, Mouraux A (2008) The determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol 100:815–828

    Article  CAS  Google Scholar 

  • Iannetti GD, Baumgartner U, Tracey I, Treede RD, Magerl W (2013) Pinprick-evoked brain potentials: a novel tool to assess central sensitization of nociceptive pathways in humans. J Neurophysiol 110:1107–1116

    Article  CAS  Google Scholar 

  • Inui K, Tran TD, Hoshiyama M, Kakigi R (2002) Preferential stimulation of Adelta fibers by intra-epidermal needle electrode in humans. Pain 96:247–252

    Article  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  CAS  Google Scholar 

  • Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000) EEG recording during fMRI experiments: image quality. Hum Brain Mapp 10:10–15

    Article  CAS  Google Scholar 

  • Kunde V, Treede RD (1993) Topography of middle-latency somatosensory evoked potentials following painful laser stimuli and non-painful electrical stimuli. Electroencephalogr Clin Neurophysiol 88:280–289

    Article  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  CAS  Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A 100:11053–11058

    Article  CAS  Google Scholar 

  • Lee AT, Glover GH, Meyer CH (1995) Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magn Reson Med 33:745–754

    Article  CAS  Google Scholar 

  • Lee MC, Mouraux A, Iannetti GD (2008) Characterizing the cortical activity related to the emergence of a conscious painful experience. In: 6th FENS Forum of European Neuroscience, Geneva, Switzerland

    Google Scholar 

  • Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38:943–952

    Article  CAS  Google Scholar 

  • Lewis T, Ponchin EE (1937) The double pain response of the human skin to a single stimulus. Clin Sci 3:67–76

    Google Scholar 

  • Liberati G, Klocker A, Safronova MM, Ferrao Santos S, Ribeiro Vaz JG, Raftopoulos C, Mouraux A (2016) Nociceptive local field potentials recorded from the human insula are not specific for nociception. PLoS Biol 14:e1002345

    Article  Google Scholar 

  • Liberati G, Algoet M, Klocker A, Ferrao Santos S, Ribeiro-Vaz JG, Raftopoulos C, Mouraux A (2018) Habituation of phase-locked local field potentials and gamma-band oscillations recorded from the human insula. Sci Rep 8:8265

    Article  Google Scholar 

  • Lui F, Duzzi D, Corradini M, Serafini M, Baraldi P, Porro CA (2008) Touch or pain? Spatio-temporal patterns of cortical fMRI activity following brief mechanical stimuli. Pain 138:362

    Article  CAS  Google Scholar 

  • Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  CAS  Google Scholar 

  • Mayhew SD, Iannetti GD, Woolrich MW, Wise RG (2006) Automated single-trial measurement of amplitude and latency of laser-evoked potentials (LEPs) using multiple linear regression. Clin Neurophysiol 117:1331–1344

    Article  CAS  Google Scholar 

  • Mayhew SD, Hylands-White N, Porcaro C, Derbyshire SWG, Bagshaw AP (2013) Intrinsic variability in the human response to pain is assembled from multiple, dynamic brain processes. Neuroimage 75:68–78

    Article  Google Scholar 

  • Melzack R (1999) From the gate to the neuromatrix. Pain Suppl 6:S121–S126

    Article  Google Scholar 

  • Menon RS, Goodyear BG (2001) Spatial and temporal resolution in fMRI. In: Jezzard P, Matthews PM, Smith SM (eds) Functional MRI an introduction to methods. Oxford University Press, Oxford, pp 145–158

    Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave De Peralta R (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  Google Scholar 

  • Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Saleh A, Schnitzler A, Winterer G (2009) Laser-evoked potential P2 single-trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures. Neuroimage 45:917–926

    Article  CAS  Google Scholar 

  • Mouraux A, Iannetti G (2009) Laser-evoked potentials do not reflect nociceptive-specific brain activity. In: 6th FENS Forum of European Neuroscience, July 12–16, Geneva, Switzerland. https://pubmed.ncbi.nlm.nih.gov/19339457/

  • Mouraux A, Iannetti GD (2008) A review of the evidence against the “first come first served” hypothesis. Comment on Truini et al. [Pain 2007;131:43-7]. Pain 136:219–221. author reply 222-213. https://pubmed.ncbi.nlm.nih.gov/19339457/

  • Mouraux A, Iannetti GD (2018) The search for pain biomarkers in the human brain. Brain 141:3290–3307

    Article  Google Scholar 

  • Mouraux A, Guerit JM, Plaghki L (2004) Refractoriness cannot explain why C-fiber laser-evoked brain potentials are recorded only if concomitant Adelta-fiber activation is avoided. Pain 112:16–26

    Article  CAS  Google Scholar 

  • Mouraux A, Iannetti GD, Plaghki L (2010) Low intensity intra-epidermal electrical stimulation can activate Aδ-nociceptors selectively. Pain 150:199–207

    Article  CAS  Google Scholar 

  • Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    Article  Google Scholar 

  • Nebel K, Stude P, Wiese H, Muller B, de Greiff A, Forsting M, Diener HC, Keidel M (2005) Sparse imaging and continuous event-related fMRI in the visual domain: a systematic comparison. Hum Brain Mapp 24:130–143

    Article  Google Scholar 

  • Niazy RK (2006) Simultaneous electroencephalography and functional MRI: methods and applications. Doctoral Dissertation. Univeristy of Oxford, Oxford

    Google Scholar 

  • Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM (2005) Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28:720–737

    Article  CAS  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain. In: The Neurophysics of EEG, 2nd edn. Oxford University Press, New York

    Chapter  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  Google Scholar 

  • Ozcan M, Baumgartner U, Vucurevic G, Stoeter P, Treede RD (2005) Spatial resolution of fMRI in the human parasylvian cortex: comparison of somatosensory and auditory activation. Neuroimage 25:877–887

    Article  Google Scholar 

  • Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122(Pt 9):1765–1780

    Article  Google Scholar 

  • Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Neurophysiol Clin 33:269–277

    Article  CAS  Google Scholar 

  • Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci U S A 99:12444–12448

    Article  CAS  Google Scholar 

  • Purves AM, Boyd SG (1993) Time-shifted averaging for laser evoked potentials. Electroencephalogr Clin Neurophysiol 88:118–122

    Article  CAS  Google Scholar 

  • Raij TT, Vartiainen NV, Jousmaki V, Hari R (2003) Effects of interstimulus interval on cortical responses to painful laser stimulation. J Clin Neurophysiol 20:73–79

    Article  Google Scholar 

  • Regan D (1989) Human brain electrophysiology. In: Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  • Robson MD, Dorosz JL, Gore JC (1998) Measurements of the temporal fMRI response of the human auditory cortex to trains of tones. Neuroimage 7:185–198

    Article  CAS  Google Scholar 

  • Rogers R, Wise RG, Painter DJ, Longe SE, Tracey I (2004) An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology 100:292–301

    Article  CAS  Google Scholar 

  • Slugg RM, Campbell JN, Meyer RA (2004) The population response of A- and C-fiber nociceptors in monkey encodes high-intensity mechanical stimuli. J Neurosci 24:4649–4656

    Article  CAS  Google Scholar 

  • Somervail R, Zhang F, Novembre G, Bufacchi RJ, Guo Y, Crepaldi M, Hu L, Iannetti GD (2021) Waves of change: brain sensitivity to differential not absolute stimulus intensity is conserved across humans and rats. Cerebral Cortex 31(2):949–960. https://doi.org/10.1093/cercor/bhaa267

  • Somervail R, Bufacchi RJ, Salvatori C, Neary-Zajiczek L, Guo Y, Novembre G, Iannetti GD (2022) Brain responses to surprising stimulus offsets: phenomenology and functional significance. Cerebral Cortex 32(10):2231–2244. https://doi.org/10.1093/cercor/bhab352

  • Speckmann E, Elger C (1999) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Baltimore, pp 15–27

    Google Scholar 

  • Tarkka IM, Treede RD (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10:513–519

    Article  CAS  Google Scholar 

  • Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55:377–391

    Article  CAS  Google Scholar 

  • Treede RD, Kief S, Holzer T, Bromm B (1988) Late somatosensory evoked cerebral potentials in response to cutaneous heat stimuli. Electroencephalogr Clin Neurophysiol 70:429–441

    Article  CAS  Google Scholar 

  • Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483(Pt 3):747–758

    Article  CAS  Google Scholar 

  • Treede RD, Meyer RA, Campbell JN (1998) Myelinated mechanically insensitive afferents from monkey hairy skin: heat-response properties. J Neurophysiol 80:1082–1093

    Article  CAS  Google Scholar 

  • Treede RD, Lorenz J, Baumgartner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33:303–314

    Article  Google Scholar 

  • Truini A, Rossi P, Galeotti F, Romaniello A, Virtuoso M, De Lena C, Leandri M, Cruccu G (2004) Excitability of the Adelta nociceptive pathways as assessed by the recovery cycle of laser evoked potentials in humans. Exp Brain Res 155:120–123

    Article  CAS  Google Scholar 

  • Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G (2005) Laser-evoked potentials: normative values. Clin Neurophysiol 116:821–826

    Article  CAS  Google Scholar 

  • Valentini E, Hu L, Chakrabarti B, Hu Y, Aglioti SM, Iannetti GD (2012) The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. Neuroimage 59:1571–1581

    Article  CAS  Google Scholar 

  • Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Auer DP, Pollmacher T, Czisch M (2007) Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur J Neurosci 25:863–871

    Article  Google Scholar 

  • Wise RG, Rogers R, Painter D, Bantick S, Ploghaus A, Williams P, Rapeport G, Tracey I (2002) Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16:999–1014

    Article  Google Scholar 

Download references

Acknowledgments

G.D. Iannetti is supported by the European Research Council (Consolidator Grant PAINSTRAT) and the Wellcome Trust (COLL JLARAXR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iannetti, G.D., Mouraux, A. (2022). Combining Electroencephalography and Functional Magnetic Resonance Imaging in Pain Research. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics