Skip to main content

Principles of Multimodal Functional Imaging and Data Integration

  • Chapter
  • First Online:
EEG - fMRI

Abstract

In a system as complex as the human brain, one cannot conceive of meaningful events involving a change in a single observable (physiological) parameter. Therefore, achieving the ultimate aim of a complete understanding of brain events and brain activity in general will require the integration of a variety of observations related to these events. Multimodal imaging, or more generally measurements whereby data from various types of instruments are brought together, has arisen from this realisation, partly because some events are best observed in one modality and the investigator is interested in another (e.g. a more recently developed modality) and to be honest sometimes as a response to the technical challenge of combining modalities for simultaneous observations. Fundamentally, multimodal imaging should allow the investigator to address the question: what happens to brain observable Z when observable X changes (or event Y occurs)? In the second half of the twentieth century, and particularly since the 1990s, a rapid development of noninvasive functional and structural brain imaging methods has occurred. While some of these developments have resulted from gradual improvements in some methods, other developments have led to completely new approaches for measuring brain activity, affording new types of information about the brain. In the former case, the older methods were eventually replaced [e.g. scintigraphic methods by positron emission tomography (PET) and SPECT or low-field MRI (magnetic resonance imaging) by higher-field MRI]. In the latter case, however, newer developments have not replaced older ones; rather, they have been added to an ever-larger orchestra of functional and structural neuroimaging methods consisting of techniques that offer complementary information about the brain. An overview of currently available methods for noninvasive brain imaging and the principle that each exploits is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12(2):230–239

    Article  CAS  Google Scholar 

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. NeuroImage 8(3):229–239

    Article  CAS  Google Scholar 

  • Antal A, Polania R, Schmidt-Samoa C, Dechent P, Paulus W (2011) Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage 55(2):590–596

    Article  Google Scholar 

  • Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F (2003) Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study. NeuroImage 19(1):1–15

    Article  CAS  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397

    Article  CAS  Google Scholar 

  • Barrington SF, Koutroumanidis M, Agathonikou A, Marsden PK, Binnie CD, Polkey CE, Maisey MN, Panayiotopoulos CP (1998) Clinical value of “ictal” FDG-positron emission tomography and the routine use of simultaneous scalp EEG studies in patients with intractable partial epilepsies. Epilepsia 39(7):753–766

    Article  CAS  Google Scholar 

  • Becker R, Ritter P, Moosmann M, Villringer A (2005) Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp 26:221–230

    Article  Google Scholar 

  • Benar C, Aghakhani Y, Wang Y, Izenberg A, Al Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin Neurophysiol 114:569–580

    Article  Google Scholar 

  • Benar CG, Schon D, Grimault S, Nazarian B, Burle B, Roth M, Badier JM, Marquis P, Liegeois-Chauvel C, Anton JL (2007) Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp 28:602–613

    Article  Google Scholar 

  • Bestmann S, Baudewig J, Frahm J (2003) On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging. J Magn Reson Imaging 17(3):309–316

    Article  Google Scholar 

  • Betta M, Handjaras G, Leo A, Federici A, Farinelli V, Ricciardi E, Siclari F, Meletti S, Ballotta D, Benuzzi F, Bernardi G (2021) Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep. NeuroImage 236:118117

    Article  Google Scholar 

  • Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–79

    Google Scholar 

  • Bohning DE, Shastri A, Nahas Z, Lorberbaum JP, Andersen SW, Dannels WR, Haxthausen EU, Vincent DJ, George MS (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Investig Radiol 33(6):336–340

    Article  CAS  Google Scholar 

  • Bonmassar G, Anami K, Ives J, Belliveau JW (1999) Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI. Neuroreport 10(9):1893–1897

    Article  CAS  Google Scholar 

  • Bonmassar G, Schwartz DP, Liu AK, Kwong KK, Dale AM, Belliveau JW (2001) Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings. NeuroImage 13(6 Pt 1):1035–1043

    Article  CAS  Google Scholar 

  • Brandt SA, Davis TL, Obrig H, Meyer BU, Belliveau JW, Rosen BR, Villringer A (1996) Functional magnetic resonance imaging shows localized brain activation during serial transcranial stimulation in man. Neuroreport 7:734–736

    Article  CAS  Google Scholar 

  • Brookings T, Ortigue S, Grafton S, Carlson J (2009) Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization. NeuroImage 44:411–420

    Article  Google Scholar 

  • Buchheim K, Obrig H, v Pannwitz W, Müller A, Heekeren H, Villringer A, Meierkord H (2004) Decrease in haemoglobin oxygenation during absence seizures in adult humans. Neurosci Lett 354(2):119–122

    Article  CAS  Google Scholar 

  • Buchner H, Fuchs M, Wischmann HA, Dössel O, Ludwig I, Knepper A, Berg P (1994) Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography. Brain Topogr 6(4):299–310

    Article  CAS  Google Scholar 

  • Buchsbaum MS, Kessler R, King A, Johnson J, Cappelletti J (1984) Simultaneous cerebral glucography with positron emission tomography and topographic electroencephalography. Prog Brain Res 62:263–9. https://doi.org/10.1016/S0079-6123(08)62182-2. PMID: 6335920

  • Busch E, Hoehn-Berlage M, Eis M, Gyngell ML, Hossmann KA (1995) Simultaneous recording of EEG, DC potential and diffusion-weighted NMR imaging during potassium induced cortical spreading depression in rats. NMR Biomed 8(2):59–64

    Article  CAS  Google Scholar 

  • Caporale A, Lee H, Lei H, Rao H, Langham MC, Detre JA, Wu PH, Wehrli FW (2021) Cerebral metabolic rate of oxygen during transition from wakefulness to sleep measured with high temporal resolution OxFlow MRI with concurrent EEG. J Cereb Blood Flow Metab 41(4):780–792

    Article  CAS  Google Scholar 

  • Caporro M, Haneef Z, Yeh HJ, Lenartowicz A, Buttinelli C, Parvizi J, Stern JM (2012) Functional MRI of sleep spindles and K-complexes. Clin Neurophysiol 123(2):303–309

    Article  Google Scholar 

  • Carmichael DW, Hamandi K, Laufs H, Duncan JS, Thomas DL, Lemieux L (2008) An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging 26:870–873

    Article  Google Scholar 

  • Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Jacobs RE, Cherry SR (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105(10):3705–3710

    Article  CAS  Google Scholar 

  • Cho J, Lee J, An H, Goyal MS, Su Y, Wang Y (2021) Cerebral oxygen extraction fraction (OEF): comparison of challenge-free gradient echo QSM+qBOLD (QQ) with (15)O PET in healthy adults. J Cereb Blood Flow Metab 41(7):1658–1668

    Article  CAS  Google Scholar 

  • Daunizeau J, Mattout J, Clonda D, Goulard B, Benali H, Lina JM (2006) Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models. IEEE Trans Biomed Eng 53(3):503–16. https://doi.org/10.1109/TBME.2005.869791

  • Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pelegrini-Issac M, Lina JM, Benali H (2007) Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 36:69–87

    Article  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25(50):11730–11737

    Article  CAS  Google Scholar 

  • Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K (2005) Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci U S A 102:17798–17803

    Article  CAS  Google Scholar 

  • Fan AP, Guo J, Khalighi MM, Gulaka PK, Shen B, Park JH, Gandhi H, Holley D, Rutledge O, Singh P, Haywood T, Steinberg GK, Chin FT, Zaharchuk G (2017) Long-delay arterial spin labeling provides more accurate cerebral blood flow measurements in Moyamoya patients: a simultaneous positron emission tomography/MRI study. Stroke 48(9):2441–2449

    Article  Google Scholar 

  • Faria P, Fregni F, Sebastião F, Dias AI, Leal A (2012) Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy. Epilepsy Behav 25(3):417–425

    Article  Google Scholar 

  • Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller KR, Blankertz B (2012) Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59(1):519–529

    Article  Google Scholar 

  • Foucher JR, Otzenberger H, Gounot D (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. BMC Neurosci 4:22

    Article  Google Scholar 

  • Frahm J, Bruhn H, Merboldt KD, Hänicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2(5):501–505

    Article  CAS  Google Scholar 

  • Gamma A, Lehmann D, Frei E, Iwata K, Pascual-Marqui RD, Vollenweider FX (2004) Comparison of simultaneously recorded [H215O]-PET and LORETA during cognitive and pharmacological activation. Hum Brain Mapp 22(2):83–96

    Article  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen MS (2000) Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol 111(11):1974–1980

    Article  CAS  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13(18):2487–2492

    Article  Google Scholar 

  • Grimm C, Schreiber A, Kristeva-Feige R, Mergner T, Hennig J, Lucking CH (1998) A comparison between electric source localisation and fMRI during somatosensory stimulation. Electroencephalogr Clin Neurophysiol 106:22–29

    Article  CAS  Google Scholar 

  • Hamandi K, Laufs H, Noth U, Carmichael DW, Duncan JS, Lemieux L (2008) BOLD and perfusion changes during epileptic generalised spike wave activity. NeuroImage 39:608–618

    Article  Google Scholar 

  • Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Munte TF, Gos A, Scherg M, Johannes S, Hundeshagen H (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–546

    Article  CAS  Google Scholar 

  • Horovitz SG, Gore JC (2004) Simultaneous event-related potential and near-infrared spectroscopic studies of semantic processing. Hum Brain Mapp 22(2):110–115

    Article  Google Scholar 

  • Hoshi Y, Mizukami S, Tamura M (1994) Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep as revealed by near-infrared spectroscopy. Brain Res 652(2):257–262

    Article  CAS  Google Scholar 

  • Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87:417–420

    Article  CAS  Google Scholar 

  • Jindal U, Sood M, Dutta A, Chowdhury SR (2015) Development of point of care testing device for neurovascular coupling from simultaneous recording of EEG and NIRS during anodal transcranial direct current stimulation. IEEE J Transl Eng Health Med 3:2000112

    Article  Google Scholar 

  • Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, Thielscher A, Kneilling M, Lichy MP, Eichner M, Klingel K, Reischl G, Widmaier S, Röcken M, Nutt RE, Machulla HJ, Uludag K, Cherry SR, Claussen CD, Pichler BJ (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465

    Article  CAS  Google Scholar 

  • Kähkönen S, Wilenius J, Komssi S, Ilmoniemi RJ (2004) Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation. Clin Neurophysiol 115(3):583–588

    Article  Google Scholar 

  • Kida I, Yamamoto T, Tamura M (1996) Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information. NMR Biomed 9(8):333–338

    Article  CAS  Google Scholar 

  • Kim H, Hua Y, Chen HT, Tsai HM, Chen CT, Karczmar G, Fan X, Xi D, Xie Q, Chou CY, Kao CM (2020) Design, evaluation and initial imaging results of a PET insert based on strip-line readout for simultaneous PET/MRI. Nucl Instrum Methods Phys Res A 959:163575

    Article  CAS  Google Scholar 

  • Kirkpatrick PJ, Lam J, Al-Rawi P, Smielewski P, Czosnyka M (1998) Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain. J Neurosurg 89(3):389–394

    Article  CAS  Google Scholar 

  • Klaessens JH, Hopman JC, van Wijk MC, Djien Liem K, Thijssen JM (2005) Assessment of local changes of cerebral perfusion and blood concentration by near infrared spectroscopy and ultrasound contrast densitometry. Brain and Development 27(6):406–414

    Article  Google Scholar 

  • Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16(5):817–826

    Article  CAS  Google Scholar 

  • Kohl M, Lindauer U, Dirnagl U, Villringer A (1998) Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats. Opt Lett 23(7):555–557

    Article  CAS  Google Scholar 

  • Kokkinos V, Vulliémoz S, Koupparis AM, Koutroumanidis M, Kostopoulos GK, Lemieux L, Garganis K (2019) A hemodynamic network involving the insula, the cingulate, and the basal forebrain correlates with EEG synchronization phases of sleep instability. Sleep 42(4):zsy259

    Article  Google Scholar 

  • Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000) EEG recording during fMRI experiments: image quality. Hum Brain Mapp 10(1):10–15

    Article  CAS  Google Scholar 

  • Krakow K, Lemieux L, Messina D, Scott CA, Symms MR, Duncan JS, Fish DR (2001a) Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. Epileptic Disord 3(2):67–74

    CAS  Google Scholar 

  • Krakow K, Messina D, Lemieux L, Duncan JS, Fish DR (2001b) Functional MRI activation of individual interictal epileptiform spikes. NeuroImage 13(3):502–505

    Article  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89(12):5675–5679

    Article  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. NeuroImage 19:1463–1476

    Article  CAS  Google Scholar 

  • Legon W, Ai L, Bansal P, Mueller JK (2018) Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp 39(5):1995–2006

    Article  Google Scholar 

  • Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17(2):322–329

    Article  CAS  Google Scholar 

  • Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38(6):943–952

    Article  CAS  Google Scholar 

  • Lemieux L, Krakow K, Fish DR (2001a) Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization. NeuroImage 14(5):1097–1104

    Article  CAS  Google Scholar 

  • Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C, Krakow K, Turner R, Fish DR (2001b) Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. NeuroImage 14(3):780–787

    Article  CAS  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci U S A 95:8945–8950

    Article  CAS  Google Scholar 

  • Mackert BM, Leistner S, Sander T, Liebert A, Wabnitz H, Burghoff M, Trahms L, Macdonald R, Curio G (2008) Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy. NeuroImage 39(3):979–986

    Article  Google Scholar 

  • Mackert BM, Wübbeler G, Leistner S, Uludag K, Obrig H, Villringer A, Trahms L, Curio G (2004) Neurovascular coupling analyzed non-invasively in the human brain. Neuroreport 15(1):63–66

    Article  Google Scholar 

  • McDannold N, Moss M, Killiany R, Rosene DL, King RL, Jolesz FA, Hynynen K (2003) MRI-guided focused ultrasound surgery in the brain: tests in a primate model. Magn Reson Med 49(6):1188–1191

    Article  Google Scholar 

  • Mehagnoul-Schipper DJ, van der Kallen BF, Colier WN, van der Sluijs MC, van Erning LJ, Thijssen HO, Oeseburg B, Hoefnagels WH, Jansen RW (2002) Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum Brain Mapp 16(1):14–23

    Article  Google Scholar 

  • Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport 8:3029–3037

    Article  CAS  Google Scholar 

  • Mochizuki H, Ugawa Y, Terao Y, Sakai KL (2006) Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans: a simultaneous recording with near-infrared spectroscopy. Exp Brain Res 169(3):302–310

    Article  CAS  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. NeuroImage 20:145–158

    Article  Google Scholar 

  • Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. NeuroImage 22(1):83–94

    Article  Google Scholar 

  • Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz J, Möller HJ, Hegerl U, Pogarell O, Jäger L (2008) Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage 42(1):158–168

    Article  Google Scholar 

  • Murta T, Chaudhary UJ, Tierney TM, Dias A, Leite M, Carmichael DW, Figueiredo P, Lemieux L (2017) Phase-amplitude coupling and the BOLD signal: a simultaneous intracranial EEG (icEEG)—fMRI study in humans performing a finger-tapping task. NeuroImage 146:438–451

    Article  CAS  Google Scholar 

  • Murta T, Hu L, Tierney TM, Chaudhary UJ, Walker MC, Carmichael DW, Figueiredo P, Lemieux L (2016) A study of the electro-haemodynamic coupling using simultaneously acquired intracranial EEG and fMRI data in humans. NeuroImage 142:371–380

    Article  CAS  Google Scholar 

  • Neuner I, Warbrick T, Arrubla J, Felder J, Celik A, Reske M, Boers F, Shah NJ (2013) EEG acquisition in ultra-high static magnetic fields up to 9.4 T. NeuroImage 68:214–220

    Article  Google Scholar 

  • Obrig H, Israel H, Kohl-Bareis M, Uludag K, Wenzel R, Müller B, Arnold G, Villringer A (2002) Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult. NeuroImage 17(1):1–18

    Article  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955

    Article  CAS  Google Scholar 

  • Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17(9):3178–3184

    Article  CAS  Google Scholar 

  • Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86(4):1983–1990

    Article  CAS  Google Scholar 

  • Peters JC, Reithler J, Graaf TA, Schuhmann T, Goebel R, Sack AT (2020) Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity. Commun Biol 3(1):40

    Article  Google Scholar 

  • Plummer C, Vogrin SJ, Woods WP, Murphy MA, Cook MJ, Liley DTJ (2019) Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study. Brain 142(4):932–951

    Article  Google Scholar 

  • Polinder-Bos HA, Elting JWJ, Aries MJ, García DV, Willemsen AT, van Laar PJ, Kuipers J, Krijnen WP, Slart RH, Luurtsema G, Westerhuis R, Gansevoort RT, Gaillard CA, Franssen CF (2020) Changes in cerebral oxygenation and cerebral blood flow during hemodialysis—a simultaneous near-infrared spectroscopy and positron emission tomography study. J Cereb Blood Flow Metab 40(2):328–340

    Article  CAS  Google Scholar 

  • Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD (2000) Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron 28(3):991–999

    Article  CAS  Google Scholar 

  • Pugnaghi M, Carmichael DW, Vaudano AE, Chaudhary UJ, Benuzzi F, Di Bonaventura C, Giallonardo AT, Rodionov R, Walker MC, Duncan JS, Meletti S, Lemieux L (2014) Generalized spike and waves: effect of discharge duration on brain networks as revealed by BOLD fMRI. Brain Topogr 27(1):123–137

    Article  Google Scholar 

  • Punwani S, Ordidge RJ, Cooper CE, Amess P, Clemence M (1998) MRI measurements of cerebral deoxyhaemoglobin concentration [dHb]—correlation with near infrared spectroscopy (NIRS). NMR Biomed 11(6):281–289

    Article  CAS  Google Scholar 

  • Ritter P, Freyer F, Curio G, Villringer A (2008) High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. Neuroimage 42(2):483–90. https://doi.org/10.1016/j.neuroimage.2008.05.026

  • Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex1. Hum Brain Mapp 30:1168–1187

    Article  Google Scholar 

  • Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J (2006) Curr Biol 16(15):1479–1488

    Article  CAS  Google Scholar 

  • Sabri O, Owega A, Schreckenberger M, Sturz L, Fimm B, Kunert P, Meyer PT, Sander D, Klingelhöfer J (2003) A truly simultaneous combination of functional transcranial Doppler sonography and H215O PET adds fundamental new information on differences in cognitive activation between schizophrenics and healthy control subjects. J Nucl Med 44(5):671–681

    Google Scholar 

  • Sadato N, Nakamura S, Oohashi T, Nishina E, Fuwamoto Y, Waki A, Yonekura Y (1998) Neural networks for generation and suppression of alpha rhythm: a PET study. Neuroreport 9(5):893–897

    Article  CAS  Google Scholar 

  • Salustri C, Chapman RM (1989) A simple method for 3-dimensional localization of epileptic activity recorded by simultaneous EEG and MEG. Electroencephalogr Clin Neurophysiol 73(6):473–478

    Article  CAS  Google Scholar 

  • Seki Y, Miyashita T, Kandori A, Maki A, Koizumi H (2012) Simultaneous measurement of neuronal activity and cortical hemodynamics by unshielded magnetoencephalography and near-infrared spectroscopy. J Biomed Opt 17(10):107001

    Article  Google Scholar 

  • Sharma NK, Pedreira C, Chaudhary UJ, Centeno M, Carmichael DW, Yadee T, Murta T, Diehl B, Lemieux L (2019) BOLD mapping of human epileptic spikes recorded during simultaneous intracranial EEG-fMRI: the impact of automated spike classification. NeuroImage 184:981–992

    Article  Google Scholar 

  • Sheridan PH, Sato S, Foster N, Bruno G, Cox C, Fedio P, Chase TN (1988) Relation of EEG alpha background to parietal lobe function in Alzheimer’s disease as measured by positron emission tomography and psychometry. Neurology 38(5):747–750

    Article  CAS  Google Scholar 

  • Shin J, von Lühmann A, Kim DW, Mehnert J, Hwang HJ, Müller KR (2018) Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Sci Data 5:180003

    Article  Google Scholar 

  • Siedenberg R, Goodin DS, Aminoff MJ, Rowley HA, Roberts TP (1996) Abstract comparison of late components in simultaneously recorded event-related electrical potentials and event-related magnetic fields. Electroencephalogr Clin Neurophysiol 99(2):191–194

    Article  CAS  Google Scholar 

  • Stancak A, Polacek H, Vrana J, Rachmanova R, Hoechstetter K, Tintra J, Scherg M (2005) EEG source analysis and fMRI reveal two electrical sources in the fronto-parietal operculum during subepidermal finger stimulation. NeuroImage 25:8–20

    Article  Google Scholar 

  • Stefan H, Schneider S, Feistel H, Pawlik G, Schuler P, Abraham Fuchs K, Schlegel T, Neubauer U, Huk WJ (1992) Ictal and interictal activity in partial epilepsy recorded with multichannel magnetoelectroencephalography: correlation of electroencephalography/electrocorticography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography findings. Epilepsia 33:874–887

    Article  CAS  Google Scholar 

  • Steinhoff BJ, Herrendorf G, Kurth C (1996) Ictal near infrared spectroscopy in temporal lobe epilepsy: a pilot study. Seizure 5(2):97–101

    CAS  Google Scholar 

  • Strangman G, Culver JP, Thompson JH, Boas DA (2002) A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. NeuroImage 17(2):719–731

    Article  Google Scholar 

  • Tan A, Fu Z, Tu Y, Hung YS, Zhang Z (2015) Joint source separation of simultaneous EEG-fMRI recording in two experimental conditions using common spatial patterns. Annu Int Conf IEEE Eng Med Biol Soc 2015(2015):2633–2636

    Google Scholar 

  • Terborg C, Birkner T, Schack B, Weiller C, Röther J (2003) Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device. Cerebrovasc Dis 16(1):36–41

    Article  CAS  Google Scholar 

  • Toronov V, Webb A, Choi JH, Wolf M, Michalos A, Gratton E, Hueber D (2001) Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Med Phys 28(4):521–527

    Article  CAS  Google Scholar 

  • Turner R, Le Bihan D, Moonen CT, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22(1):159–166

    Article  CAS  Google Scholar 

  • Vasios CE, Angelone LM, Purdon PL, Ahveninen J, Belliveau JW, Bonmassar G (2006) EEG/(f)MRI measurements at 7 Tesla using a new EEG cap (“InkCap”). NeuroImage 33(4):1082–1092

    Article  Google Scholar 

  • Villringer A, Dirnagl U (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 7(3):240–276

    CAS  Google Scholar 

  • Villringer K, Minoshima S, Hock C, Obrig H, Ziegler S, Dirnagl U, Schwaiger M, Villringer A (1997) Comparison of near infrared spectroscopy and positron emission tomography in the assessment of frontal brain activation in humans. Adv Exp Med Biol 413:149–153

    Article  CAS  Google Scholar 

  • Walter H, Kristeva R, Knorr U, Schlaug G, Huang Y, Steinmetz H, Nebeling B, Herzog H, Seitz RJ (1992) Individual somatotopy of primary sensorimotor cortex revealed by intermodal matching of MEG, PET, and MRI. Brain Topogr 5:183–187

    Article  CAS  Google Scholar 

  • Warach S, Ives JR, Schlaug G, Patel MR, Darby DG, Thangaraj V, Edelman RR, Schomer DL (1996) EEG-triggered echo-planar functional MRI in epilepsy. Neurology 47(1):89–93

    Article  CAS  Google Scholar 

  • Warach S, Levin JM, Schomer DL, Holman BL, Edelman RR (1994) Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. AJNR Am J Neuroradiol 15(5):965–968

    CAS  Google Scholar 

  • Zotev VS, Matlashov AN, Volegov PL, Savukov IM, Espy MA, Mosher JC, Gomez JJ, Kraus RH Jr (2008) Microtesla MRI of the human brain combined with MEG. J Magn Reson 194:115–120

    Article  CAS  Google Scholar 

  • Zotev V, Phillips R, Yuan H, Misaki M, Bodurka J (2014) Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage 85(Pt 3):985–995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Villringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Villringer, A., Mulert, C., Lemieux, L. (2022). Principles of Multimodal Functional Imaging and Data Integration. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics