Skip to main content

An Overview of Class II Phosphoinositide 3-Kinases

  • Chapter
  • First Online:
PI3K and AKT Isoforms in Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 436))

Abstract

Phosphoinositide 3-kinases (PI3Ks) catalyse the synthesis of specific members of the family of lipids collectively known as ‘phosphoinositides’. These PI3Ks products can in turn modulate activation of many downstream proteins, ultimately regulating several cellular processes. Mammalian cells possess eight PI3Ks which are grouped into three classes based on their structure and substrate specificity. While class I and III PI3Ks have been extensively investigated, our understanding of the three class II members has only improved in most recent years. This chapter will summarise some of the available information on mammalian class II PI3Ks and their physiological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DAG:

Diacylglycerol

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

HCC:

Hepatocellular carcinoma

IL:

Interleukin

LPA:

Lysophosphatidic acid

LPS:

Lipopolysaccharide

MEF:

Mouse embryonic fibroblast

NADPH:

Nicotinamide adenine dinucleotide phosphate

OA:

Osteoarthritis

PI3K:

Phosphoinositide 3-kinase

PtdIns:

Phosphatidylinositol

PtdIns3P:

Phosphatidylinositol 3-phosphate

PtdIns4P:

Phosphatidylinositol 4-phosphate

PtdIns(4,5)P2:

Phosphatidylinositol 4,5-bisphosphate

PtdIns(3,4)P2:

Phosphatidylinositol 3,4-bisphosphate

PtdIns(3,4,5)P3:

Phosphatidylinositol 3,4,5-trisphosphate

PX:

Phox homology

RA:

Rheumatoid arthritis

TNF:

Tumour necrosis factor

References

  • Abere B, Samarina N, Gramolelli S et al (2018) Kaposi’s sarcoma-associated herpesvirus nonstructural membrane protein pK15 recruits the class II phosphatidylinositol 3-kinase PI3K-C2α to activate productive viral replication. J Virol 92:e00544-e618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alliouachene S, Bilanges B, Chicanne G et al (2015) Inactivation of the class II PI3K-C2β potentiates insulin signaling and sensitivity. Cell Rep 13:1881–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alliouachene S, Bilanges B, Chaussade C et al (2016) Inactivation of class II PI3K-C2α induces leptin resistance, age-dependent insulin resistance and obesity in male mice. Diabetologia 59:1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KE, Boyle KB, Davidson K et al (2008) CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of Escherichia coli or Staphylococcus aureus is regulated by class III but not class I or II PI3Ks. Blood 112:5202–5211

    Article  CAS  PubMed  Google Scholar 

  • Arcaro A, Volinia S, Zvelebil MJ et al (1998) Human phosphoinositide 3-kinase C2beta, the role of calcium and the C2 domain in enzyme activity. J Biol Chem 273:33082–33090

    Article  CAS  PubMed  Google Scholar 

  • Arcaro A, Zvelebil MJ, Wallasch C et al (2000) Class II phosphoinositide 3-kinases are downstream targets of activated polypeptide growth factor receptors. Mol Cell Biol 20:3817–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcaro A, Khanzada UK, Vanhaesebroeck B et al (2002) Two distinct phosphoinositide 3-kinases mediate polypeptide growth factor-stimulated PKB activation. EMBO J 21:5097–5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aung KT, Yoshioka K, Aki S et al (2019) The class II phosphoinositide 3-kinases PI3K-C2α and PI3K-C2β differentially regulate clathrin-dependent pinocytosis in human vascular endothelial cells. J Physiol Sci 69:263–280

    Article  CAS  PubMed  Google Scholar 

  • Backer JM (2008) The regulation and function of class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17

    Article  CAS  PubMed  Google Scholar 

  • Bilanges B, Posor Y, Vanhaesebroeck B (2019) PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 20:515–534

    Article  CAS  PubMed  Google Scholar 

  • Birkeland HC, Stenmark H (2004) Protein targeting to endosomes and phagosomes via FYVE and PX domains. Curr Top Microbiol Immunol 282:89–115

    CAS  PubMed  Google Scholar 

  • Bischoff ME, Zang Y, Chu J et al (2021) Selective MAP1LC3C (LC3C) autophagy requires noncanonical regulators and the C-terminal peptide. J Cell Biol 220:e202004182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukhalfa A, Nascimbeni AC, Dupont N et al (2020a) Primary cilium-dependent autophagy drafts PIK3C2A to generate PtdIns3P in response to shear stress. Autophagy 16:1143–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukhalfa A, Nascimbeni AC, Ramel D et al (2020b) PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun 11:294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braccini L, Ciraolo E, Campa CC et al (2015) PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun 6:7400

    Article  CAS  PubMed  Google Scholar 

  • Brown RA, Ho LK, Weber-Hall SJ et al (1997) Identification and cDNA cloning of a novel mammalian C2 domain-containing phosphoinositide 3-kinase, HsC2-PI3K. Biochem Biophys Res Commun 233:537–544

    Article  CAS  PubMed  Google Scholar 

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  • Chamcheu JC, Adhami VM, Esnault S et al (2017) Dual inhibition of PI3K/Akt and mTOR by the dietary antioxidant, delphinidin, ameliorates psoriatic features in vitro and in an imiquimod-induced psoriasis-like disease in mice. Antioxid Redox Signal 26:49–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KE, Tillu VA, Chandra M et al (2018) Molecular basis for membrane recruitment by the PX and C2 domains of class II phosphoinositide 3-kinase-C2α. Structure 26:1612-1625.e4

    Article  CAS  PubMed  Google Scholar 

  • Chiang TM, Postlethwaite AE (2006) Increase in phosphotidylinositide-3 kinase activity by nitrotyrosylation of lysates of platelets from patients with systemic sclerosis. Biochim Biophys Acta 1760:32–37

    Article  CAS  PubMed  Google Scholar 

  • Chikh A, Ferro R, Abbott JJ et al (2016) Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget 7:18325–18345

    Article  PubMed  PubMed Central  Google Scholar 

  • Chua J, Deretic V (2004) Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. J Biol Chem 279:36982–36992

    Article  CAS  PubMed  Google Scholar 

  • Cisse O, Quraishi M, Gulluni F et al (2019) Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth. J Exp Clin Cancer Res 38:472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium GTEx (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585

    Article  Google Scholar 

  • Das M, Scappini E, Martin NP et al (2007) Regulation of neuron survival through an intersectin-phosphoinositide 3ʹ-kinase C2beta-AKT pathway. Mol Cell Biol 27:7906–7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domin J, Waterfield MD (1997) Using structure to define the function of phosphoinositide 3-kinase family members. FEBS Lett 410:91–95

    Article  CAS  PubMed  Google Scholar 

  • Domin J, Pages F, Volinia S et al (1997) Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem J 326:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domin J, Harper L, Aubyn D et al (2005) The class II phosphoinositide 3-kinase PI3K-C2beta regulates cell migration by a PtdIns3P dependent mechanism. J Cell Physiol 205:452–462

    Article  CAS  PubMed  Google Scholar 

  • Dominguez V, Raimondi C, Somanath S et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem 286:4216–4225

    Article  CAS  PubMed  Google Scholar 

  • Ellson CD, Anderson KE, Morgan G et al (2001a) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr Biol 11:1631–1635

    Article  CAS  PubMed  Google Scholar 

  • Ellson CD, Gobert-Gosse S, Anderson KE et al (2001b) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nat Cell Biol 3:679–682

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  CAS  PubMed  Google Scholar 

  • Falasca M, Maffucci T (2007) Role of class II phosphoinositide 3-kinase in cell signalling. Biochem Soc Trans 35:211–214

    Article  CAS  PubMed  Google Scholar 

  • Falasca M, Maffucci T (2012) Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443:587–601

    Article  CAS  PubMed  Google Scholar 

  • Falasca M, Hughes WE, Dominguez V et al (2007) The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem 282:28226–28236

    Article  CAS  PubMed  Google Scholar 

  • Falasca M, Hamilton JR, Selvadurai M et al (2017) Class II phosphoinositide 3-kinases as novel drug targets. J Med Chem 60:47–65

    Article  CAS  PubMed  Google Scholar 

  • Franco I, Gulluni F, Campa CC et al (2014) PI3K class II α controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev Cell 28:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco I, Margaria JP, De Santis MC et al (2016) Phosphoinositide 3-kinase-C2α regulates polycystin-2 ciliary entry and protects against kidney cyst formation. J Am Soc Nephrol 27:1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Gaidarov I, Smith ME, Domin J et al (2001) The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 7:443–449

    Article  CAS  PubMed  Google Scholar 

  • Germic N, Frangez Z, Yousefi S et al (2019a) Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells. Cell Death Differ 26:703–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germic N, Frangez Z, Yousefi S et al (2019b) Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ 26:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghigo A, Morello F, Perino A et al (2012) Phosphoinositide 3-kinases in health and disease. Subcell Biochem 58:183–213

    Article  CAS  PubMed  Google Scholar 

  • Gulluni F, Martini M, De Santis MC et al (2017) Mitotic spindle assembly and genomic stability in breast cancer require PI3K-C2α scaffolding function. Cancer Cell 32:444-459.e7

    Article  CAS  PubMed  Google Scholar 

  • Gulluni F, De Santis MC, Margaria JP et al (2019) Class II PI3K functions in cell biology and disease. Trends Cell Biol 29:339–359

    Article  CAS  PubMed  Google Scholar 

  • Harada K, Truong AB, Cai T et al (2005) The class II phosphoinositide 3-kinase C2beta is not essential for epidermal differentiation. Mol Cell Biol 25:11122–11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam S, Yoshioka K, Aki S et al (2020) Class II phosphatidylinositol 3-kinase α and β isoforms are required for vascular smooth muscle Rho activation, contraction and blood pressure regulation in mice. J Physiol Sci 70:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katso RM, Pardo OE, Palamidessi A et al (2006) Phosphoinositide 3-kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell 17:3729–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Jung KH, Yoo J et al (2020) PBT-6, a novel PI3K-C2γ inhibitor in rheumatoid arthritis. Biomol Ther (Seoul) 28:172–183

    Article  Google Scholar 

  • Krag C, Malmberg EK, Salcini AE (2010) PI3KC2α, a class II PI3K, is required for dynamin-independent internalization pathways. J Cell Sci 123:4240–4250

    Article  CAS  PubMed  Google Scholar 

  • Leibiger B, Moede T, Uhles S et al (2010) Insulin-feedback via PI3K-C2alpha activated PKBalpha/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 24:1824–1837

    Article  CAS  PubMed  Google Scholar 

  • Leibiger B, Moede T, Paschen M et al (2015) PI3K-C2α knockdown results in rerouting of insulin signaling and pancreatic beta cell proliferation. Cell Rep 13:15–22

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhou J, Kai S et al (2020) Functional and clinical characterization of tumor-infiltrating T cell subpopulations in hepatocellular carcinoma. Front Genet 11:586415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhao D, Wang X et al (2021) LncRNA KCNQ1OT1 attenuates osteoarthritic chondrocyte dysfunction via the miR-218-5p/PIK3C2A axis. Cell Tissue Res 385:115–126

    Article  CAS  PubMed  Google Scholar 

  • MacDougall LK, Domin J, Waterfield MD (1995) A family of phosphoinositide 3-kinases in Drosophila identifies a new mediator of signal transduction. Curr Biol 5:1404–1415

    Article  CAS  PubMed  Google Scholar 

  • Maffucci T (2012) An introduction to phosphoinositides. Curr Top Microbiol Immunol 362:1–42

    CAS  PubMed  Google Scholar 

  • Maffucci T, Cooke FT, Foster FM et al (2005) Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Biol 169:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marat AL, Wallroth A, Lo WT et al (2017) mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-bisphosphate. Science 356:968–972

    Article  CAS  PubMed  Google Scholar 

  • Margaria JP, Ratto E, Gozzelino L et al (2019) Class II PI3Ks at the intersection between signal transduction and membrane trafficking. Biomolecules 9:104

    Article  CAS  PubMed Central  Google Scholar 

  • Mavrommati I, Cisse O, Falasca M et al (2016) Novel roles for class II phosphoinositide 3-kinase C2β in signalling pathways involved in prostate cancer cell invasion. Sci Rep 6:23277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy BA, Yancopoulos S, Tipping M et al (2015) A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. Immunol Res 63:90–100

    Article  CAS  PubMed  Google Scholar 

  • Merrill NM, Schipper JL, Karnes JB et al (2017) PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE 12:e0184909

    Article  PubMed  PubMed Central  Google Scholar 

  • Meunier FA, Osborne SL, Hammond GR et al (2005) Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Mol Biol Cell 16:4841–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa H, Ohtsubo M, Copeland NG et al (1998) Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain. Biochem Biophys Res Commun 244:531–539

    Article  CAS  PubMed  Google Scholar 

  • Mountford JK, Petitjean C, Putra HW et al (2015) The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nat Commun 6:6535

    Article  CAS  PubMed  Google Scholar 

  • Nascimbeni AC, Codogno P, More E (2017a) Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS J 284:1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Nascimbeni AC, Codogno P, Morel E (2017b) Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS J 284:1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Nigorikawa K, Hazeki K, Guo Y et al (2014) Involvement of class II phosphoinositide 3-kinase α-isoform in antigen-induced degranulation in RBL-2H3 cells. PLoS ONE 9:e111698

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Hanlon R, Leyva-Grado VH, Sourisseau M et al (2019) An influenza virus entry inhibitor targets class II PI3 kinase and synergizes with oseltamivir. ACS Infect Dis 5:1779–1793

    Article  PubMed  Google Scholar 

  • Ono F, Nakagawa T, Saito S et al (1998) A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration. J Biol Chem 273:7731–7736

    Article  CAS  PubMed  Google Scholar 

  • Petitjean C, Setiabakti NM, Mountford JK et al (2016) Combined deficiency of PI3KC2α and PI3KC2β reveals a nonredundant role for PI3KC2α in regulating mouse platelet structure and thrombus stability. Platelets 27:402–409

    Article  CAS  PubMed  Google Scholar 

  • Polachek WS, Moshrif HF, Franti M et al (2016) High-throughput small interfering RNA screening identifies phosphatidylinositol 3-kinase class II alpha as important for production of human cytomegalovirus virions. J Virol 90:8360–8371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posor Y, Eichhorn-Gruenig M, Puchkov D et al (2013) Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499:233–237

    Article  CAS  PubMed  Google Scholar 

  • Roberts R, Ktistakis NT (2013) Omegasomes: PI3P platforms that manufacture autophagosomes. Essays Biochem 55:17–27

    Article  CAS  PubMed  Google Scholar 

  • Rozycka M, Lu YJ, Brown RA et al (1998) cDNA cloning of a third human C2-domain-containing class II phosphoinositide 3-kinase, PI3K-C2gamma, and chromosomal assignment of this gene (PIK3C2G) to 12p12. Genomics 54:569–574

    Article  CAS  PubMed  Google Scholar 

  • Sarker MAK, Aki S, Yoshioka K et al (2019) Class II PI3Ks α and β are required for Rho-dependent uterine smooth muscle contraction and parturition in mice. Endocrinology 160:235–248

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Li Z, Lin L et al (2005) The phosphatidylinositol 3-phosphate phosphatase myotubularin-related protein 6 (MTMR6) is a negative regulator of the Ca2+-activated K+ channel KCa3.1. Mol Cell Biol 25:3630–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Choudhury P, Li Z et al (2006a) Phosphatidylinositol 3-phosphate indirectly activates KCa3.1 via 14 amino acids in the carboxy terminus of KCa3.1. Mol Biol Cell 17:146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Ko K, Choudhury P et al (2006b) Phosphatidylinositol-3 phosphatase myotubularin-related protein 6 negatively regulates CD4 T cells. Mol Cell Biol 26:5595–5602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Di L, Zhdanova O et al (2009) The class II phosphatidylinositol 3 kinase C2beta is required for the activation of the K+ channel KCa3.1 and CD4 T-cells. Mol Biol Cell 20:3783–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Li Z, Skolnik EY (2017) Phosphatidlyinositol-3-kinase C2 beta (PI3KC2β) is a potential new target to treat IgE mediated disease. PLoS ONE 12:e0183474

    Article  PubMed  PubMed Central  Google Scholar 

  • Suh CI, Stull ND, Li XJ et al (2006) The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcgammaIIA receptor-induced phagocytosis. J Exp Med 203:1915–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibolla G, Piñeiro R, Chiozzotto D et al (2013) Class II phosphoinositide 3-kinases contribute to endothelial cells morphogenesis. PLoS ONE 8:e53808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiosano D, Baris HN, Chen A et al (2019) Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genet 15:e1008088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valet C, Chicanne G, Severac C et al (2015) Essential role of class II PI3K-C2α in platelet membrane morphology. Blood 126:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K et al (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M et al (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13:195–203

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Whitehead MA, Piñeiro R (2016) Molecules in medicine mini-review: isoforms of PI3K in biology and disease. J Mol Med (Berlin) 94:5–11

    Article  CAS  Google Scholar 

  • Vieira OV, Botelho RJ, Rameh L et al (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virbasius JV, Guilherme A, Czech MP (1996) Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain. J Biol Chem 271:13304–13307

    Article  CAS  PubMed  Google Scholar 

  • Visnjić D, Curić J, Crljen V et al (2003) Nuclear phosphoinositide 3-kinase C2beta activation during G2/M phase of the cell cycle in HL-60 cells. Biochim Biophys Acta 1631:61–71

    Article  PubMed  Google Scholar 

  • Wallroth A, Koch PA, Marat AL et al (2019) Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1. Nat Cell Biol 21:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yoshioka K, Azam MA et al (2006) Class II phosphoinositide 3-kinase alpha-isoform regulates Rho, myosin phosphatase and contraction in vascular smooth muscle. Biochem J 394:581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Lo WT, Vujičić Žagar A et al (2018) Autoregulation of class II alpha PI3K activity by its lipid-binding PX-C2 domain module. Mol Cell 71:343-351.e4

    Article  CAS  PubMed  Google Scholar 

  • Wen PJ, Osborne SL, Morrow IC et al (2008) Ca2+-regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles. Mol Biol Cell 19:5593–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler M, Domin J (2006) The N-terminus of phosphoinositide 3-kinase-C2beta regulates lipid kinase activity and binding to clathrin. J Cell Physiol 206:586–593

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka K, Sugimoto N, Takuwa N et al (2007) Essential role for class II phosphoinositide 3-kinase alpha-isoform in Ca2+-induced, Rho- and Rho kinase-dependent regulation of myosin phosphatase and contraction in isolated vascular smooth muscle cells. Mol Pharmacol 71:912–920

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka K, Yoshida K, Cui H et al (2012) Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 18:1560–1569

    Article  CAS  PubMed  Google Scholar 

  • Zhao YG, Codogno P, Zhang H (2021) Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol 23:1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Maffucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heng, E.Y.Z., Maffucci, T. (2022). An Overview of Class II Phosphoinositide 3-Kinases. In: Dominguez-Villar, M. (eds) PI3K and AKT Isoforms in Immunity . Current Topics in Microbiology and Immunology, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-06566-8_2

Download citation

Publish with us

Policies and ethics