Skip to main content

Navigation in Orthognathic Surgery

  • Chapter
  • First Online:
Navigation in Oral and Maxillofacial Surgery
  • 241 Accesses

Abstract

Most commonly used orthognathic surgery procedures have been used for more than 50 years following a typical planning protocol. The main aim of these procedures is to displace the maxilla or mandible (mono-maxillary approach) or both (bimaxillary approach) into another position to correct maxillofacial deformities. The planning process for bimaxillary approach is more difficult than mono-maxillary approach and requires the application of several steps to produce two splints: intermediate and final. Intermediate splints suffer from accumulated errors in the planning procedure and is the target of improvements. Even with the introduction of three-dimensional (3D) virtual planning into orthognathic surgery, differences between preoperative planning and postoperative outcome achieved have been shown with both under- or over-corrections. Splint-based techniques have to be improved by relying on splint-less techniques. Image-guided navigation systems have been introduced in 1996 in orthognathic surgery as a splint-less technique with the promise of guiding surgeons with real-time visualization of the accurate position of surgical instruments. Unfortunately, navigation systems failed to live up to the promise and can only be used as a measuring tool rather than a guiding tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plath T, Hoffmeister B, Neumann P, Siebert D, Tolxdorff T, Wolff K, et al. Positioning of the maxilla in orthognathic surgery using intraoperative navigation. Int J Oral Maxillofac Surg. 1999;28:62. https://doi.org/10.1016/S0901-5027(99)80839-X.

    Article  Google Scholar 

  2. Tanaka M, Sato H, Inada T, Yaso A, Ogura H, Shirota T. Maxillary repositioning using a CAD/CAM wafer and an intraoperative navigation system for bimaxillary orthognathic surgery using segmental Le fort I osteotomy: a pilot study. J Oral Maxillofac Surg Med Pathol. 2021;33(6):581–6. https://doi.org/10.1016/j.ajoms.2021.04.003.

    Article  Google Scholar 

  3. Bell RB. Computer planning and intraoperative navigation in orthognathic surgery. J Oral Maxillofac Surg. 2011;69(3):592–605. https://doi.org/10.1016/j.joms.2009.06.030.

    Article  Google Scholar 

  4. Azarmehr I, Stokbro K, Bell RB, Thygesen T. Surgical navigation: a systematic review of indications, treatments, and outcomes in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2017;75(9):1987–2005. https://doi.org/10.1016/j.joms.2017.01.004.

    Article  Google Scholar 

  5. Shaheen E, Sun Y, Jacobs R, Politis C. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg. 2017;46(1):67–71.

    Article  CAS  Google Scholar 

  6. Shaheen E, Coopman R, Jacobs R, Politis C. Optimized 3D virtually planned intermediate splints for bimaxillary orthognathic surgery: a clinical validation study in 20 patients. J Craniomaxillofacial Surg. 2018;46(9):1441–7. https://doi.org/10.1016/j.jcms.2018.05.050.

    Article  Google Scholar 

  7. Govaerts D, Shaheen E, Coopman R, De Mol A, Sun Y, Politis C. Accuracy of Le Fort I osteotomy in bimaxillary splint-based orthognathic surgery: focus on posterior maxillary movements. Int J Oral Maxillofac Surg. 2018;47(11):1398–404. https://doi.org/10.1016/j.ijom.2018.05.008.

    Article  CAS  Google Scholar 

  8. Mulier D, Shaheen E, Shujaat S, Fieuws S, Jacobs R, Politis C. How accurate is digital-assisted Le Fort I maxillary osteotomy? A three-dimensional perspective. Int J Oral Maxillofac Surg. 2020;49(1):69–74.

    Article  CAS  Google Scholar 

  9. Agbaje JO, Sun Y, Lambrichts I, Politis C. Problems during orthognathic surgery resulting from errors in diagnostic wax bite. J Craniofac Surg. 2013;24(3):999–1001. http://www.ncbi.nlm.nih.gov/pubmed/23714932

    Article  Google Scholar 

  10. Nijmeh AD, Goodger NM, Hawkes D, Edwards PJ, McGurk M. Image-guided navigation in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2005;43(4):294–302.

    Article  CAS  Google Scholar 

  11. Sun Y, Luebbers HT, Agbaje JO, Schepers S, Vrielinck L, Lambrichts I, et al. Validation of anatomical landmarks-based registration for image-guided surgery: an in-vitro study. J Craniomaxillofacial Surg. 2013;41(6):522–6. https://doi.org/10.1016/j.jcms.2012.11.017.

    Article  Google Scholar 

  12. Sun Y, Luebbers HT, Agbaje JO, Lambrichts I, Politis C. The accuracy of image-guided navigation for maxillary positioning in bimaxillary surgery. J Craniofac Surg. 2014;25(3):1095–9.

    Article  Google Scholar 

  13. Shim BK, Shin HS, Nam SM, Kim YB. Real-time navigation-assisted orthognathic surgery. J Craniofac Surg. 2013;24(1):221–5.

    Article  Google Scholar 

  14. Chen X, Li Y, Xu L, Sun Y, Politis C, Jiang X. A real time image-guided reposition system for the loosed bone graft in orthognathic surgery. Comput Assist Surg (Abingdon). 2021;26(1):1–8.

    Article  Google Scholar 

  15. Han JJ, Woo S-Y, Yi W-J, Hwang SJ. Robot-assisted maxillary positioning in orthognathic surgery: a feasibility and accuracy evaluation. J Clin Med. 2021;10(12):2596.

    Article  Google Scholar 

  16. Mischkowski RA, Zinser MJ, Kübler AC, Krug B, Seifert U, Zöller JE. Application of an augmented reality tool for maxillary positioning in orthognathic surgery - a feasibility study. J Craniomaxillofacial Surg. 2006;34(8):478–83.

    Article  Google Scholar 

  17. Wagner A, Rasse M, Millesi W, Ewers R. Virtual reality for orthognathic surgery: the augmented reality environment concept. J Oral Maxillofac Surg. 1997;55(5):456–62.

    Article  CAS  Google Scholar 

  18. Stokbro K, Borg SW, Andersen MØ, Thygesen T. Patient-specific 3D printed plates improve stability of Le Fort 1 osteotomies in vitro. J Craniomaxillofacial Surg. 2019;47(3):394–9.

    Article  Google Scholar 

  19. Stokbro K, Bell RB, Thygesen T. Patient-specific printed plates improve surgical accuracy in vitro. J Oral Maxillofac Surg. 2018;76(12):2647.e1–9. https://doi.org/10.1016/j.joms.2018.08.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinus Politis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Politis, C., Sun, Y., Lei, T., Shaheen, E. (2022). Navigation in Orthognathic Surgery. In: Parhiz, S.A., James, J.N., Ghasemi, S., Amirzade-Iranaq, M.H. (eds) Navigation in Oral and Maxillofacial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-06223-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06223-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06222-3

  • Online ISBN: 978-3-031-06223-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics