Skip to main content

Supercontinuum in Telecom Applications

  • Chapter
  • First Online:
The Supercontinuum Laser Source

Abstract

This chapter documents progress in the extensive area of supercontinuum (SC) generation research devoted to applications in telecommunications, including research into the different mechanisms of spectral broadening and their interplay, SC generation in various media and the most promising SC applications in fibre-based and free-space telecom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeeluck, A. K., Radic, S., Brar, K., Bouteiller, J.-C., & Headley, C. (2003). In Optical Fiber Communication Conference (OFC) 2003, Postconference Digest, Vol. 86 of OSA trends in optics and photonics series (pp. 561–562).

    Google Scholar 

  • Abeeluck, A. K., Headley, C., & Jørgensen, C. G. (2004). High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Optics Letters, 29, 2163–2165.

    Article  ADS  Google Scholar 

  • Agrawal, G. P. (2001). Nonlinear fiber optics. Academic Press.

    MATH  Google Scholar 

  • Akhmediev, N., Dudley, J. M., Solli, D. R., & Turitsyn, S. K. (2013). Recent progress in investigating optical rogue waves. Journal of Optics, 15(6), 060201.

    Article  ADS  Google Scholar 

  • Akimov, D. A., Ivanov, A. A., Alfimov, M. V., Bagayev, S. N., Birks, T. A., Wadsworth, W. J., Russell, P. S. J., Fedotov, A. B., Pivtsov, V. S., Podshivalov, A. A., & Zheltikov, A. M. (2002). Two-octave spectral broadening of subnanojoule Cr:forsterite femtosecond laser pulses in tapered fibers. Applied Physics B, 74, 307–311.

    Article  Google Scholar 

  • Alfano, R. R. (Ed.). (1989). The super continuum laser sources. Springer.

    Google Scholar 

  • Alfano, R. R., & Shapiro, S. L. (1970a). Emission in the region 4000 to 7000 angstrom via four-photon coupling in glass. Physical Review Letters, 24, 584–587.

    Article  ADS  Google Scholar 

  • Alfano, R. R., & Shapiro, S. L. (1970b). Observation of self-phase modulation and small-scale filaments in crystals and glasses. Physical Review Letters, 24, 592–594.

    Article  ADS  Google Scholar 

  • Anderson, M. E., de Araujo, L. E. E., Kosik, E. M., & Walmsley, I. A. (2000). The effects of noise on ultrashortoptical-pulse measurement using SPIDER. Applied Physics B, 70, S85–S93.

    Article  Google Scholar 

  • Ania-Castañón, J. D., Ellingham, T. J., Ibbotson, R., Chen, X., Zhang, L., & Turitsyn, S. K. (2006). Ultralong Raman fiber lasers as virtually lossless optical media. Physical Review Letters, 96(2), 023902.

    Article  ADS  Google Scholar 

  • Apolonski, A., Povazay, B., Unterhuber, A., Drexler, W., Wadsworth, W. J., Knight, J. C., & Russell, P. S. J. (2002). Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses. Journal of the Optical Society of America, 19, 2165–2170.

    Article  ADS  Google Scholar 

  • Applied Physics B, 77(2–3) (2003) – Special issue: supercontinuum generation.

    Google Scholar 

  • Avdokhin, A. V., Popov, S. V., & Taylor, J. R. (2003). Continuous-wave, high-power, Raman continuum generation in holey fibers. Optics Letters, 28, 1353–1355.

    Article  ADS  Google Scholar 

  • Bagaev, S. N., Denisov, V. I., Zakhar’yash, V. F., Klement’ev, V. M., Kobtsev, S. M., Kuznetsov, S. A., Kukarin, S. V., Pivtsov, V. S., Smirnov, S. V., & Fateev, N. V. (2004). Spectral and temporal characteristics of a supercontinuum in tapered optical fibres. Quantum Electronics, 34, 1107–1115.

    Article  ADS  Google Scholar 

  • Baldeck, P. L., & Alfano, R. R. (1987). Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers. Journal of Lightwave Technology, 5, 1712–1715.

    Article  ADS  Google Scholar 

  • Bartels, A., & Kurz, H. (2002). Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate. Optics Letters, 27, 1839–1841.

    Article  ADS  Google Scholar 

  • Barviau, B., Kibler, B., & Picozzi, A. (2009). Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion. Physical Review A, 79, 063840.

    Article  ADS  Google Scholar 

  • Belli, F., Abdolvand, A., Chang, W., Travers, J. C., & P. St. J. Russell. (2015). Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica, 2(4), 292–300.

    Article  ADS  Google Scholar 

  • Bellini, M., & Hänsch, T. W. (2000). Phase-locked white-light continuum pulses: Toward a universal optical frequency-comb synthesizer. Optics Letters, 25, 1049–1051.

    Article  ADS  Google Scholar 

  • Bétourné, A., Kudlinski, A., Bouwmans, G., Vanvincq, O., Mussot, A., & Quiquempois, Y. (2009). Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers. Optics Letters, 34(20), 3083–3085.

    Article  ADS  Google Scholar 

  • Biancalana, F., Skryabin, D. V., & Russel, P. S. (2003). Four wave mixing instabilities in photonic-crystal and tapered fibers. Physical Review E, 68, 046631–046638.

    Article  Google Scholar 

  • Birks, T. A., Knight, J. C., & Russell, P. S. J. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22, 961–963.

    Article  ADS  Google Scholar 

  • Birks, T. A., Wadsworth, W. J., & Russell, P. S. J. (2000). Supercontinuum generation in tapered fibers. Optics Letters, 25, 1415–1417.

    Article  ADS  Google Scholar 

  • Bloembergen, N. (1973). The influence of electron plasma formation on superbroadening in light filaments. Optics Communications, 8, 285–288.

    Article  ADS  Google Scholar 

  • Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A. E., & Ramachandran, S. (2013). Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340(6140), 1545–1548.

    Article  ADS  Google Scholar 

  • Broeng, J., Barkou, S. E., Bjarklev, A., Knight, J. C., Birks, T. A., & Russell, P. S. J. (1998). Highly increased photonic band gaps in silica/air structures. Optics Communications, 156, 240–244.

    Article  ADS  Google Scholar 

  • Brunet, C., Vaity, P., Messaddeq, Y., LaRochelle, S., & Rusch, L. A. (2014). Design, fabrication and validation of an OAM fiber supporting 36 states. Optics Express, 22(21), 26117–26127.

    Article  ADS  Google Scholar 

  • Cao, Q., Gu, X., Zeek, E., Kimmel, M., Trebino, R., Dudley, J., & Windeler, R. S. (2003). Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber. Applied Physics B, 77, 239–244.

    Article  Google Scholar 

  • Chen, K. K., Alam, S., Price, J. H. V., Hayes, J. R., Lin, D., Malinowski, A., Codemard, C., Ghosh, D., Pal, M., Bhadra, S. K., & Richardson, D. J. (2010). Picosecond fiber MOPA pumped supercontinuum source with 39 W output power. Optics Express, 18(6), 5426–5432.

    Article  ADS  Google Scholar 

  • Chen, H., Chen, S., Wang, J., Chen, Z., & Hou, J. (2011). 35W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser. Optics Communications, 284(23), 5484–5487.

    Article  ADS  Google Scholar 

  • Chenan, X., Zhao, X., Islam, M. N., Terry, F. L., Freeman, M. J., Zakel, A., & Mauricio, J. (2009). 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 um with direct pulse pattern modulation. Journal of Selected Topics in Quantum Electronics, 15(2), 422--434.

    Google Scholar 

  • Cheng, T., Nagasaka, K., Tuan, T. H., Xue, X., Matsumoto, M., Tezuka, H., Suzuki, T., & Ohishi, Y. (2016). Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Optics Letters, 41(9), 2117–2120.

    Article  ADS  Google Scholar 

  • Chernikov, S. V., Dianov, E. M., Richardson, D. J., Laming, R. I., & Payne, D. N. (1993). 114 Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat signal in dispersion decreasing optical fiber. Applied Physics Letters, 63, 293–295.

    Article  ADS  Google Scholar 

  • Chernikov, S. V., Taylor, J. R., & Kashyap, R. (1994). Comblike dispersion-profiled fiber for soliton pulse train generation. Optics Letters, 19, 539–541.

    Article  ADS  Google Scholar 

  • Chestnut, D. A., & Taylor, J. R. (2003). Gain-flattened fiber Raman amplifiers with nonlinearity-broadened pumps. Optics Letters, 153, 2294–2296.

    Article  ADS  Google Scholar 

  • Cheung, K. K. Y., Zhang, C., Zhou, Y., Wong, K. K. Y., & Tsia, K. K. (2011). Manipulating supercontinuum generation by minute continuous wave. Optics Letters, 36(2), 160–162.

    Article  ADS  Google Scholar 

  • Chi, J.-J., Li, P.-X., Hu, H., Yao, Y.-F., Zhang, G.-J., Yang, C., & Zhao, Z.-Q. (2014). 120 W subnanosecond ytterbium-doped double clad fiber amplifier and its application in supercontinuum generation. Laser Physics, 24(8), 085103.

    Article  ADS  Google Scholar 

  • Coen, S., Chau, A. H. L., Leonhardt, R., Harvey, J. D., Knight, J. C., Wadsworth, W. J., & Russell, P. S. J. (2001). White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 26, 1356–1358.

    Article  ADS  Google Scholar 

  • Coen, S., Chau, A. H. L., Leonhardt, R., Harvey, J. D., Knight, J. C., Wadsworth, W. J., & Russell, P. S. J. (2002). Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America B, 19, 753–764.

    Article  ADS  Google Scholar 

  • Corkum, P. B., & Rolland, C. (1989). Femtosecond continua produced in gases. Journal of Quantum Electronics, 25, 2634–2639.

    Article  ADS  Google Scholar 

  • Corkum, P. B., Rolland, C., & Srinivasan-Rao, T. (1986). Supercontinuum generation in gases. Physical Review Letters, 57, 2268–2271.

    Article  ADS  Google Scholar 

  • Corwin, K. L., Newbury, N. R., Dudley, J. M., Coen, S., Diddams, S. A., Weber, K., & Windeler, R. S. (2003a). Fundamental noise limitations to supercontinuum generation in microstructure fiber. Physical Review Letters, 90, 113904.

    Article  ADS  Google Scholar 

  • Corwin, K. L., Newbury, N. R., Dudley, J. M., Coen, S., Diddams, S. A., Washburn, B. R., Weber, K., & Windeler, R. S. (2003b). Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber. Applied Physics B, 77, 269–277.

    Article  Google Scholar 

  • Cregan, R. F., Mangan, B. J., & Knight, J. C. (1999). Single-mode photonic and gap guidance of light in air. Science, 285, 1537–1539.

    Article  Google Scholar 

  • Cumberland, B. A., Travers, J. C., Popov, S. V., & Taylor, J. R. (2008). 29 W High power CW supercontinuum source. Optics Express, 16(8), 5954–5962.

    Article  ADS  Google Scholar 

  • Demircan, A., & Bandelow, U. (2007). Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation. Applied Physics B, 86(1), 31–39.

    Article  Google Scholar 

  • Dianov, E. M., Mamyshev, P. V., Prokhorov, A. M., & Chernikov, S. V. (1989). Generation of a train of fundamental solitons at a high repetition rate in optical fibers. Optics Letters, 14, 1008–1010.

    Article  ADS  Google Scholar 

  • Diddams, S. A., Jones, D. J., Ye, J., Cundiff, T., Hall, J. L., Ranka, J. K., Windeler, R. S., Holzwarth, R., Udem, T., & Hänsch, T. W. (2000a). Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Physical Review Letters, 84, 5102–5105.

    Article  ADS  Google Scholar 

  • Diddams, S. A., Jones, D. J., Ye, J., Fortier, T. M., Windeler, R. S., Cundiff, S. T., Hänsch, T. W., & Hall, J. L. (2000b). Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses. Optics and Photonics News, 11, 16–22.

    Article  ADS  Google Scholar 

  • Diddams, S. A., Jones, D. J., Ye, J., Cundiff, S. T., Hall, J. L., Ranka, J. K., & Windeler, R. S. (2001). Direct RF to optical frequency measurements with a femtosecond laser comb. IEEE Transactions on Instrumentation and Measurement, 50, 552–555.

    Article  ADS  Google Scholar 

  • Domachuk, P., Wolchover, N. A., Cronin-Golomb, M., Wang, A., George, A. K., Cordeiro, C. M. B., Knight, J. C., & Omenetto, F. G. (2008). Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Optics Express, 16(10), 7161–7168.

    Article  ADS  Google Scholar 

  • Drexler, W. (2004). Ultrahigh-resolution optical coherence tomography. Journal of Biomedical Optics, 9, 47–74.

    Article  ADS  Google Scholar 

  • Drexler, W., Morgner, U., Kärtner, F. X., Pitris, C., Boppart, S. A., Li, X. D., Ippen, E. P., & Fujimoto, J. G. (1999). In vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 24, 1221–1224.

    Article  ADS  Google Scholar 

  • Dudley, J. M., & Coen, S. (2002). Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Optics Letters, 27, 1180–1182.

    Article  ADS  Google Scholar 

  • Dudley, J. M., & Coen, S. (2004). Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. Optics Express, 12, 2423–2428.

    Article  ADS  Google Scholar 

  • Dudley, J., Gu, X., Xu, L., Kimmel, M., Zeek, E., O’Shea, P., Trebino, R., Coen, S., & Windeler, R. (2002a). Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: Simulations and experiments. Optics Express, 10, 1215–1221.

    Article  ADS  Google Scholar 

  • Dudley, J. M., Provino, L., Grossard, N., Maillotte, H., Windeler, R. S., Eggleton, B. J., & Coen, S. (2002b). Supercontinuum generation in air-silica microstructured fiber with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America B, 19, 765–771.

    Article  ADS  Google Scholar 

  • Dudley, J. M., Genty, G., & Coen, S. (2006). Supercontinuum generation in photonic crystal fibers. Reviews of Modern Physics, 78, 1135–1184.

    Article  ADS  Google Scholar 

  • Dudley, J. M., Genty, G., & Eggleton, B. J. (2008). Harnessing and control of optical rogue waves in supercontinuum generation. Optics Express, 16, 3644–3651.

    Article  ADS  Google Scholar 

  • Dudley, J. M., Genty, G., Dias, F., Kibler, B., & Akhmediev, N. (2009). Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Optics Express, 17(24), 21497–21508.

    Article  ADS  Google Scholar 

  • Ellingham, T. J., Gleeson, L. M., & Doran, N. J. (2002). Enhanced Raman amplifier performance using non-linear pump broadening. In Proceedings ECOC 2002, 4.1.3.

    Google Scholar 

  • Ellingham, T. J., Ania-Castañón, J. D., Turitsyn, S. K., Pustovskikh, A., Kobtsev, S., & Fedoruk, M. P. (2005). Dual-pump Raman amplification with increased flatness using modulation instability. Optics Express, 13, 1079–1084.

    Article  ADS  Google Scholar 

  • El-Taher, A. E., Ania-Castañón, J. D., Karalekas, V., & Harper, P. (2009). High efficiency supercontinuum generation using ultra-long Raman fiber cavities. Optics Express, 17, 17909–17915.

    Article  ADS  Google Scholar 

  • Epping, J. P., Hellwig, T., Hoekman, M., Mateman, R., Leinse, A., Heideman, R. G., van Rees, A., van der Slot, P. J. M., Lee, C. J., Fallnich, C., & Boller, K. J. (2015). On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Optics Express, 23(15), 19596–19604.

    Article  ADS  Google Scholar 

  • Erkintalo, M., Genty, G., & Dudley, J. M. (2009). Rogue-wave-like characteristics in femtosecond supercontinuum generation. Optics Letters, 34(16), 2468–2470.

    Article  ADS  Google Scholar 

  • Ettabib, M. A., Xu, L., Bogris, A., Kapsalis, A., Belal, M., Lorent, E., Labeye, P., Nicoletti, S., Hammani, K., Syvridis, D., Shepherd, D. P., Price, J. H. V., Richardson, D. J., & Petropoulos, P. (2015). Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. Optics Letters, 40(15), 4118–4121.

    Article  ADS  Google Scholar 

  • Fatome, J., Pitois, S., & Millot, G. (2006). 20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fiber. IEEE Journal of Quantum Electronics, 42, 1038–1046.

    Article  ADS  Google Scholar 

  • Fedotov, A. B., Zheltikov, A. M., Ivanov, A. A., Alfimov, M. V., Chorvat, D., Beloglazov, V. I., Melnikov, L. A., Skibina, N. B., Tarasevitch, A. P., & von der Linde, D. (2000). Supercontinuum-generating holey fibers as new broadband sources for spectroscopic applications. Laser Physics, 10, 723–726.

    Google Scholar 

  • Fercher, A. F., Drexler, W., Hitzenberger, C. K., & Lasser, T. (2003). Optical coherence tomography – Principles and applications. Reports on Progress in Physics, 66, 239–303.

    Article  ADS  Google Scholar 

  • Fermann, M. E., Kruglov, V. I., Thomsen, B. C., Dudley, J. M., & Harvey, J. D. (2000). Self-similar propagation and amplification of parabolic pulses in optical fibers. Physical Review Letters, 84(26), 6010–6013.

    Article  ADS  Google Scholar 

  • Ferrando, A., Silvestre, E., Miret, J. J., Monsoriu, J. A., Andres, M. V., & Russell, P. S. J. (1999). Designing a photonic crystal fibre with flattened chromatic dispersion. Electronics Letters, 35, 325–327.

    Article  ADS  Google Scholar 

  • Ferrando, A., Silvestre, E., Miret, J. J., & Andres, P. (2000). Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters, 25, 790–792.

    Article  ADS  Google Scholar 

  • Ferrando, A., Silvestre, E., Andres, P., Miret, J. J., & Andres, M. V. (2001). Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 9, 687–697.

    Article  ADS  Google Scholar 

  • Fisher, R. A., Kelley, P. L., & Gustafson, T. K. (1969). Subpicosecond pulse generation using the optical Kerr effect. Applied Physics Letters, 14, 140.

    Article  ADS  Google Scholar 

  • Fork, R. L., Brito Cruz, C. H., Becker, P. C., & Shank, C. V. (1987). Compression of optical pulses to six femtoseconds by using cubic phase compensation. Optics Letters, 12, 483–485.

    Article  ADS  Google Scholar 

  • Foster, M. A., Moll, K. D., & Gaeta, A. L. (2004). Optimal waveguide dimensions for nonlinear interactions. Optics Express, 12, 2880–2887.

    Article  ADS  Google Scholar 

  • François, V., Ilkov, F. A., & Chin, S. L. (1993). Experimental study of the supercontinuum spectral width evolution in CO2 gas. Optics Communications, 99, 241–246.

    Article  ADS  Google Scholar 

  • Gaeta, A. L. (2002). Nonlinear propagation and continuum generation in microstructured optical fibers. Optics Letters, 27, 924–926.

    Article  ADS  Google Scholar 

  • Gaeta, A. L., Lipson, M., & Kippenberg, T. J. (2019). Photonic-chip-based frequency combs. Nature Photonics, 13, 158–169.

    Article  ADS  Google Scholar 

  • Geng, J., Wang, Q., & Jiang, S. (2012). High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier. Applied Optics, 51(7), 834–840.

    Article  ADS  Google Scholar 

  • Genty, G., Lehtonen, M., Ludvigsen, H., Broeng, J., & Kaivola, M. (2002). Spectral broadening of femtosecond pulses into continuum generation in microstructured fibers. Optics Express, 10, 1083–1098.

    Article  ADS  Google Scholar 

  • Genty, G., Dudley, J. M., & Eggleton, B. J. (2009). Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime. Applied Physics B, 94(2), 187–194.

    Article  Google Scholar 

  • Gibson, G., Courtial, J., Padgett, M. J., Vasnetsov, M., Pas’ko, V., Barnett, S. M., & Franke-Arnold, S. (2004). Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 12(22), 5448–5456.

    Article  ADS  Google Scholar 

  • González-Herráez, M., Martín-López, S., Corredera, P., Hernanz, M. L., & Horche, P. R. (2003). Supercontinuum generation using a continuous-wave Raman fiber laser. Optics Communications, 226, 323–328.

    Article  ADS  Google Scholar 

  • Gorbach, A. V., & Skryabin, D. V. (2007). Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nature Photonics, 1, 653–657.

    Article  ADS  Google Scholar 

  • Gordon, J. P. (1986). Theory of the soliton self-frequency shift. Optics Letters, 11, 662–664.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Gomes, A. S. L., & Taylor, J. R. (1987). Generation of 33-fsec pulses at 1.32 mcm through a high-order soliton effect in a single-mode optical fiber. Optics Letters, 12, 395–397.

    Article  ADS  Google Scholar 

  • Granzow, N., Stark, S. P., Schmidt, M. A., Tverjanovich, A. S., Wondraczek, L., & P. St. J. Russell. (2011). Supercontinuum generation in chalcogenide-silica step-index fibers. Optics Express, 19(21), 21003–21010.

    Article  ADS  Google Scholar 

  • Gu, X., Xu, L., Kimmel, M., Zeek, E., O’Shea, P., Shreenath, A. P., Trebino, R., & Windeler, R. S. (2002). Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum. Optics Letters, 27, 1174.

    Article  ADS  Google Scholar 

  • Gu, X., Kimmel, M., Shreenath, A. P., Trebino, R., Dudley, J. M., Coen, S., & Windeler, R. S. (2003). Experimental studies of the coherence of microstructure-fiber supercontinuum. Optics Express, 11, 2697–2703.

    Article  ADS  Google Scholar 

  • Hartl, I., Li, X. D., Chudoba, C., Ghanta, R. K., Ko, T. H., Fujimoto, J. G., Ranka, J. K., & Windeler, R. S. (2001). Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 26, 608–610.

    Article  ADS  Google Scholar 

  • Hasegawa, A. (1984). Generation of a train of soliton pulses by induced modulational instability in optical fibers. Optics Letters, 9, 288–290.

    Article  ADS  Google Scholar 

  • He, G. S., Lin, T. C., & Prasad, P. N. (2002). New technique for degenerate two-photon absorption spectral measurements using femtosecond continuum generation. Optics Express, 10, 566–574.

    Article  ADS  Google Scholar 

  • Heidt, A. M. (2010). Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. Journal of the Optical Society of America B, 27(3), 550–559.

    Article  ADS  Google Scholar 

  • Heidt, A. M., Hartung, A., Bosman, G. W., Krok, P., Rohwer, E. G., Schwoerer, H., & Bartelt, H. (2011). Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Optics Express, 19(4), 3775–3787.

    Article  ADS  Google Scholar 

  • Heidt, A. M., Feehan, J. S., Price, J. H. V., & Feurer, T. (2017). Limits of coherent supercontinuum generation in normal dispersion fibers. Journal of the Optical Society of America B, 34(4), 764–775.

    Article  ADS  Google Scholar 

  • Herrmann, J., Griebner, U., Zhavoronkov, N., Husakou, A., Nickel, D., Knight, J. C., Wadsworth, W. J., Russell, P. S. J., & Korn, G. (2002). Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Physical Review Letters, 88, 173901.

    Article  ADS  Google Scholar 

  • Hillerkuss, D., Schmogrow, R., Schellinger, T., Jordan, M., Winter, M., Huber, G., Vallaitis, T., Bonk, R., Kleinow, P., Frey, F., Roeger, M., Koenig, S., Ludwig, A., Marculescu, A., Li, J., Hoh, M., Dreschmann, M., Meyer, J., Ben Ezra, S., et al. (2011). 26 Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photonics, 5, 364–371.

    Article  ADS  Google Scholar 

  • Hillerkuss, D., Schmogrow, R., Meyer, M., Wolf, S., Jordan, M., et al. (2012). Single-laser 32.5 Tbit/s Nyquist WDM transmission. Journal of Optical Communications and Networking, 4(10), 715–723.

    Article  Google Scholar 

  • Ho, P. P., Wang, Q. Z., Chen, J., Liu, Q. D., & Alfano, R. R. (1997). Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation. Applied Optics, 36, 3425–3429.

    Article  ADS  Google Scholar 

  • Holzwarth, R., Udem, T., Hansch, T. W., Knight, J. C., Wadsworth, W. J., & Russell, P. S. J. (2000). Optical frequency synthesizer for precision spectroscopy. Physical Review Letters, 85, 2264–2267.

    Article  ADS  Google Scholar 

  • Holzwarth, R., Zimmermann, M., Udem, T., Hänsch, T. W., Nevsky, A., von Zanthier, J., Walther, H., Knight, J. C., Wadsworth, W. J., P. St. J. Russell, Skvortsov, M. N., & Bagayev, S. N. (2001). Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer. Applied Physics B, 73, 269–271.

    Article  Google Scholar 

  • Hooper, L. E., Mosley, P. J., Muir, A. C., Wadsworth, W. J., & Knight, J. C. (2011). Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Optics Express, 19(6), 4902–4907.

    Article  ADS  Google Scholar 

  • Hsieh, I.-W., Chen, X., Liu, X., Dadap, J. I., Panoiu, N. C., Chou, C.-Y., Xia, F., Green, W. M., Vlasov, Y. A., & Osgood, R. M. (2007). Supercontinuum generation in silicon photonic wires. Optics Express, 15(23), 15242–15249.

    Article  ADS  Google Scholar 

  • Hu, J., Menyuk, C. R., Shaw, L. B., Sanghera, J. S., & Aggarwal, I. D. (2010). Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. Optics Express, 18(7), 6722–6739.

    Article  ADS  Google Scholar 

  • Huang, H., Xie, G., Yan, Y., Ahmed, N., Ren, Y., Yue, Y., Rogawski, D., Willner, M. J., Erkmen, B. I., Birnbaum, K. M., Dolinar, S. J., Lavery, M. P. J., Padgett, M. J., Tur, M., & Willner, A. E. (2014). 100  Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters, 39(2), 197–200.

    Article  ADS  Google Scholar 

  • Hudson, D. D., Dekker, S. A., Mägi, E. C., Judge, A. C., Jackson, S. D., Li, E., Sanghera, J. S., Shaw, L. B., Aggarwal, I. D., & Eggleton, B. J. (2011). Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy. Optics Letters, 36(7), 1122–1124.

    Article  ADS  Google Scholar 

  • Hudson, D. D., Antipov, S., Li, L., Alamgir, I., Hu, T., El Amraoui, M., Messaddeq, Y., Rochette, M., Jackson, S. D., & Fuerbach, A. (2017). Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4(10), 1163–1166.

    Article  ADS  Google Scholar 

  • Husakou, A. V., & Herrmann, J. (2001). Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Physical Review Letters, 87, 203901.

    Article  ADS  Google Scholar 

  • Iaconis, C., & Walmsley, I. A. (1998). Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Optics Letters, 23, 792–794.

    Article  ADS  Google Scholar 

  • Iaconis, C., & Walmsley, I. A. (1999). Self-referencing spectral interferometry for measuring ultrashort optical pulses. IEEE Journal of Quantum Electronics, 35, 501–509.

    Article  ADS  Google Scholar 

  • Islam, M. N., Sucha, G., Bar-Joseph, I., Wegener, M., Gordon, J. P., & Chemla, D. S. (1989). Femtosecond distributed soliton spectrum fibers. Journal of the Optical Society of America B, 6, 1149–1158.

    Article  ADS  Google Scholar 

  • Ivanov, A. A., Alfimov, M. V., Fedotov, A. B., Podshivalov, A. A., Chorvat, D., & Zheltikov, A. M. (2001). An all-solid-state sub-40-fs self-starting Cr4+: Forsterite laser with holey-fiber beam delivery and chirp control for coherence-domain and nonlinear-optical biomedical applications. Laser Physics, 11, 158–163.

    Google Scholar 

  • Jasapara, J., Her, T. H., Bise, R., Windeler, R., & DiGiovanni, D. J. (2003). Group-velocity dispersion measurements in a photonic bandgap fiber. Journal Optical Society of America B, 20(8), 1611–1615.

    Article  ADS  Google Scholar 

  • Jiang, X., Joly, N. Y., Finger, M. A., Babic, F., Wong, G. K. L., Travers, J. C., & P. St. J. Russell. (2015). Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nature Photonics, 9, 133–139.

    Article  ADS  Google Scholar 

  • Johnson, A. R., Mayer, A. S., Klenner, A., Luke, K., Lamb, E. S., Lamont, M. R. E., Joshi, C., Okawachi, Y., Wise, F. W., Lipson, M., Keller, U., & Gaeta, A. L. (2015). Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Optics Letters, 40(21), 5117–5120.

    Article  ADS  Google Scholar 

  • Jones, D. A., Diddams, S. A., Ranka, J. K., Stentz, A., Windeler, R. S., Hall, J. L., & Cundiff, S. T. (2000). Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635–639.

    Article  ADS  Google Scholar 

  • Kane, D. J., & Trebino, R. (1993). Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. Optics Letters, 18, 823–825.

    Article  ADS  Google Scholar 

  • Kartapoulos, S. V., & Bouhiyate, M. (2005). Supercontinuum sources in CWDM applications with channel protection. Proceedings of OFC 2005, NTuH4, Anaheim.

    Google Scholar 

  • Kelleher, E. J. R., Travers, J. C., Popov, S. V., & Taylor, J. R. (2012). Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability. Journal of the Optical Society of America B, 29, 502–512.

    Article  ADS  Google Scholar 

  • Kim, K. Y., Taylor, A. J., Glownia, J. H., & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2, 605–609.

    Article  Google Scholar 

  • Knight, J. C., Birks, T. A., Russell, P. S. J., & Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21(19), 1547–1549.

    Article  ADS  Google Scholar 

  • Knight, J. C., Birks, T. A., Russell, P. S. J., & Atkin, D. M. (1997). All-silica single-mode optical fiber with photonic crystal cladding: Errata. Optics Letters, 22, 484–485.

    Article  ADS  Google Scholar 

  • Knight, J. C., Birks, T. A., Russell, P. S. J., & de Sandro, J. P. (1998a). Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A, 15, 748–752.

    Article  ADS  Google Scholar 

  • Knight, J. C., Birks, T. A., Cregan, R. F., Russell, P. S. J., & de Sandro, J. P. (1998b). Large mode area photonic crystal fibre. Electronics Letters, 34, 1347–1348.

    Article  ADS  Google Scholar 

  • Knight, J. C., Broeng, J., Birks, T. A., & Russel, P. S. J. (1998c). Photonic band gap guidance in optical fibers. Science, 282, 1476–1478.

    Article  Google Scholar 

  • Knight, J. C., Arriaga, J., Birks, T. A., Ortigosa-Blanch, A., Wadsworth, W. J., & Russell, P. S. J. (2000). Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 12, 807–809.

    Article  ADS  Google Scholar 

  • Kobtsev, S. M., & Smirnov, S. V. (2004). Optimization of temporal characteristics of supercontinuum generated in tapered air-clad fibers. Laser Optics 2003: Diode Lasers and Telecommunication Systems, Proceedings SPIE, 5480, 64–71.

    ADS  Google Scholar 

  • Kobtsev, S., & Smirnov, S. (2005). Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. Optics Express, 13(18), 6912–6918.

    Article  ADS  Google Scholar 

  • Kobtsev, S. M., & Smirnov, S. V. (2006). Coherent properties of super-continuum containing clearly defined solitons. Optics Express, 14, 3968–3980.

    Article  ADS  Google Scholar 

  • Kobtsev, S. M., & Smirnov, S. V. (2007). Supercontinuum fiber sources under pulsed and CW pumping. Laser Physics, 17(11), 1303–1305.

    Article  ADS  Google Scholar 

  • Kobtsev, S. M., & Smirnov, S. V. (2008a). Fiber supercontinuum generators with dynamically controlled parameters. Laser Physics, 18(11), 1264–1267.

    Article  ADS  Google Scholar 

  • Kobtsev, S. M., & Smirnov, S. V. (2008b). Influence of noise amplification on generation of regular short pulse trains in optical fibre pumped by intensity-modulated CW radiation. Optics Express, 16(10), 7428–7434.

    Article  ADS  Google Scholar 

  • Kobtsev, S. M., & Smirnov, S. V. (2008c). Temporal structure of a supercontinuum generated under pulsed and CW pumping. Laser Physics, 18(11), 1260–1263.

    Article  ADS  Google Scholar 

  • Kobtsev, S. M., Kukarin, S. V., & Fateev, N. V. (2003). Generation of a polarised supercontinuum in small-diameter quasi-elliptic fibres. Quantum Electronics, 33, 1085–1088.

    Article  ADS  Google Scholar 

  • Kobtsev, S. M., Kukarin, S. V., Fateev, N. V., & Smirnov, S. V. (2004). Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping. Laser Physics, 14, 748–751.

    Google Scholar 

  • Kobtsev, S. M., Kukarin, S. V., Fateev, N. V., & Smirnov, S. V. (2005). Сoherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre. Applied Physics B, 81(2–3), 265–269.

    Article  Google Scholar 

  • Kubota, H., Tamura, K., & Nakazawa, M. (1999). Analyzes of coherence maintained ultrashort optical pulse trains and supercontinuum in the presence of soliton-amplified spontaneous-emission interaction. Journal of the Optical Society of America, 16, 2223–2232.

    Article  ADS  Google Scholar 

  • Kudlinski, A., & Mussot, A. (2008). Visible cw-pumped supercontinuum. Optics Letters, 33(20), 2407–2409.

    Article  ADS  Google Scholar 

  • Kudlinski, A., George, A. K., Knight, J. C., Travers, J. C., Rulkov, A. B., Popov, S. V., & Taylor, J. R. (2006). Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 14(12), 5715–5722.

    Article  ADS  Google Scholar 

  • Kudlinski, A., Bouwmans, G., Douay, M., Taki, M., & Mussot, A. (2009). Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources. Journal of Lightwave Technology, 27(11), 1556–1564.

    Article  ADS  Google Scholar 

  • Kurkov, A. S., Kamynin, V. A., Sholokhov, E. M., & Marakulin, A. V. (2011). Mid-IR supercontinuum generation in Ho-doped fiber amplifier. Laser Physics Letters, 8, 754.

    Article  ADS  Google Scholar 

  • Kuyken, B., Liu, X., Osgood, R. M., Jr., Baets, R., Roelkens, G., & Green, W. M. J. (2011). Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Optics Express, 19(21), 20172–20181.

    Article  ADS  Google Scholar 

  • Lafargue, C., Bolger, J., Genty, G., Dias, F., Dudley, J. M., & Eggleton, B. J. (2009). Direct detection of optical rogue wave energy statistics in supercontinuum generation. Electronics Letters, 45(4), 217–219.

    Article  ADS  Google Scholar 

  • Lehtonen, M., Genty, G., Ludvigsen, H., & Kaivola, M. (2003). Supercontinuum generation in a highly birefringent microstructured fiber. Applied Physics Letters, 82, 2197–2199.

    Article  ADS  Google Scholar 

  • Leong, J. Y. Y., Petropoulos, P., Asimakis, S., Ebendorff-Heidepriem, H., Moore, R. C., Frampton, K., Finazzi, V., Feng, X., Price, J. H., Monro, T. M., & Richardson, D. J. (2005). A lead silicate holey fiber with γ=1820 W-1 km-1 at 1550 nm. Proceedings of OFC 2005, Anaheim, PDP22.

    Google Scholar 

  • Levy, J. S., Saha, K., Okawachi, Y., Foster, M. A., Gaeta, A. L., & Lipson, M. (2012). High-performance silicon-nitride-based multiple-wavelength source. Photonics Technology Letters, 24(16), 1375–1377.

    Article  ADS  Google Scholar 

  • Liao, M., Chaudhari, C., Qin, G., Yan, X., Suzuki, T., & Ohishi, Y. (2009). Tellurite microstructure fibers with small hexagonal core for supercontinuum generation. Optics Express, 17(14), 12174–12182.

    Article  ADS  Google Scholar 

  • Lin, C., & Stolen, R. H. (1976). New nanosecond continuum for excited-state spectroscopy. Applied Physics Letters, 28, 216–218.

    Article  ADS  Google Scholar 

  • Lopez-Galmiche, G., Sanjabi Eznaveh, Z., Eftekhar, M. A., Antonio Lopez, J., Wright, L. G., Wise, F., Christodoulides, D., & Amezcua Correa, R. (2016). Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm. Optics Letters, 41(11), 2553–2556.

    Article  ADS  Google Scholar 

  • Lu, C. H., Tsou, Y. J., Chen, H. Y., Chen, B. H., Cheng, Y. C., Yang, S. D., Chen, M. C., Hsu, C. C., & Kung, A. H. (2014). Generation of intense supercontinuum in condensed media. Optica, 1(6), 400–406.

    Article  ADS  Google Scholar 

  • Marks, D. L., Oldenburg, A. L., Reynolds, J. J., & Boppart, S. A. (2002). Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. Optics Letters, 27, 2010–2012.

    Article  ADS  Google Scholar 

  • Mitschke, F. M., & Mollenauer, L. F. (1986). Discovery of the soliton self-frequency shift. Optics Letters, 11, 659–661.

    Article  ADS  Google Scholar 

  • Miyagawa, Y., Yamamoto, T., Masuda, H., Abe, M., Takahashi, H., & Takara, H. (2006). Over-10000-channel 2.5-GHz-spaced ultra-dense WDM light source. Electronics Letters, 42(11), 655–657.

    Article  ADS  Google Scholar 

  • Mogilevtsev, D., Birks, T. A., & Russell, P. S. J. (1998). Group-velocity dispersion in photonic crystal fibers. Optics Letters, 23, 1662–1664.

    Article  ADS  Google Scholar 

  • Morgner, U., Kärtner, F. X., Cho, S. H., Chen, Y., Haus, H. A., Fujimoto, J. G., Ippen, E. P., Scheuer, V., Angelow, G., & Tschudi, T. (1999). Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Optics Letters, 24, 411–413.

    Article  ADS  Google Scholar 

  • Mori, K., Morioka, T., & Saruwatari, M. (1995). Ultrawide spectral range group velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 μm compact laser source. IEEE Transactions on Instrumentation and Measurement, 44, 712–715.

    Article  ADS  Google Scholar 

  • Mori, K., Takara, H., Kawanishi, S., Saruwatari, M., & Morioka, T. (1997). Flatly broadened supercontinuum generated in a dispersion decreasing fiber with convex dispersion profile. Electronics Letters, 33, 1806–1808.

    Article  ADS  Google Scholar 

  • Mori, K., Takara, K., & Kawanishi, S. (1998). The effect of pump fluctuation in supercontinuum pulse generation. Nonlinear Guided Waves & Their Applications, OSA Tech Dig Ser, 5, 276–278.

    Google Scholar 

  • Mori, K., Takara, H., & Kawanishi, S. (2001). Analysis and design of supercontinuum pulse generation in a single-mode optical fiber. Journal of the Optical Society of America B, 18, 1780–1792.

    Article  ADS  Google Scholar 

  • Mori, K., Sato, K., Takara, H., & Ohara, T. (2003). Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C-and L-bands. Electronics Letters, 39(6), 544.

    Article  ADS  Google Scholar 

  • Morioka, T., Mori, K., & Saruwatari, M. (1993). More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers. Electronics Letters, 29, 862–864.

    Article  ADS  Google Scholar 

  • Morioka, T., Takara, H., Kawanishi, S., Kamatani, O., Takiguchi, K., Uchiyama, K., Saruwatari, M., Takahashi, H., Yamada, M., Kanamori, T., & Ono, H. (1996). 1 Tbit/s 100 Gbit/s 10 channel OTDM-WDM transmission using a single supercontinuum WDM source. Electronics Letters, 32(10), 906.

    Article  ADS  Google Scholar 

  • Mussot, A., Kudlinski, A., Kolobov, M., Louvergneaux, E., Douay, M., & Taki, M. (2009). Observation of extreme temporal events in CW-pumped supercontinuum. Optics Express, 17(19), 17010–17015.

    Article  ADS  Google Scholar 

  • Nakazawa, M., Tamura, K., Kubota, H., & Yoshida, E. (1998). Coherence degradation in the process of supercontinuum generation in an optical fiber. Optical Fiber Technology, 4, 215–223.

    Article  ADS  Google Scholar 

  • Nelson, B. P., Cotter, D., Blow, K. J., & Doran, N. J. (1983). Large non-linear pulse broadening in long lengths of monomode fibre. Optics Communications, 48, 292–294.

    Article  ADS  Google Scholar 

  • Newbury, N. (2011). Searching for applications with a fine-tooth comb. Nature Photonics, 5, 186–188.

    Article  ADS  Google Scholar 

  • Ndagano, B., Brüning, R., McLaren, M., Duparré, M., & Forbes, A. (2015). Fiber propagation of vector modes. Optics Express, 23(13), 17330–17336.

    Article  ADS  Google Scholar 

  • Nicholson, J. W., Yan, M. F., Wisk, P., Fleming, J., DiMarcello, F., Monberg, E., Yablon, A., Jørgensen, C., & Veng, T. (2003a). All-fiber, octave-spanning supercontinuum. Optics Letters, 28, 643–645.

    Article  ADS  Google Scholar 

  • Nicholson, J. W., Abeeluck, A. K., Headley, C., Yan, M. F., & Jørgensen, C. G. (2003b). Pulsed and continuous-wave SC generation in highly nonlinear, dispersion-shifted fibers. Applied Physics B, 77, 211–218.

    Article  Google Scholar 

  • Nicholson, J. W., Westbrook, P. S., Feder, K. S., & Yablon, A. D. (2004a). Supercontinuum generation in ultraviolet-irradiated fibers. Optics Letters, 29, 2363–2365.

    Article  ADS  Google Scholar 

  • Nicholson, J. W., Fini, J. M., Bouteiller, J.-C., Bromage, J., & Brar, K. (2004b). Stretched ultrashort pulses for high repetition rate swept-wavelength Raman pumping. Journal of Lightwave Technology, 22(1), 71–78.

    Article  ADS  Google Scholar 

  • Nikolov, N. I., Sorensen, T., Bang, O., & Bjarklev, A. (2003). Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave-mixing. Journal of the Optical Society America B, 11, 2329–2337.

    Article  ADS  Google Scholar 

  • Nishizawa, N., & Goto, T. (2001). Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser. Japanese Journal of Applied Physics, 40, L365–L367.

    Article  ADS  Google Scholar 

  • Nishizawa, N., & Takayanagi, J. (2007). Octave spanning high-quality supercontinuum generation in all-fiber system. Journal of the Optical Society of America B, 24(8), 1786–1792.

    Article  ADS  Google Scholar 

  • Oda, S., & Maruta, A. (2004). Experimental demonstration of optical quantizer based on slicing supercontinuum spectrum for all-optical analog-to-digital conversion. In Conference Proceedings of ECOC 2004, Paper We4.P.084, Stockholm, Sweden.

    Google Scholar 

  • Oda, S., & Maruta, A. (2005a). A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion. IEEE Photonics Technology Letters, 17, 465–467.

    Article  ADS  Google Scholar 

  • Oda, S., & Maruta, A. (2005b). All-optical analog-to-digital conversion by slicing supercontinuum spectrum and switching with nonlinear optical loop mirror. Proceedings of OFC 2005, paper OThN3, Anaheim.

    Google Scholar 

  • Oda, S., Okamoto, S., & Maruta, A. (2004). A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion. In Conference Proceedings NLGW 2004, Toronto, Canada, Paper TuB3.

    Google Scholar 

  • Ohara, T., Takara, H., Yamamoto, T., Masuda, H., Morioka, T., Abe, M., & Takahashi, H. (2005). Over 1000 channel, 6.25 GHz-spaced ultra-DWDM transmission with supercontinuum multi-carrier source. Proceedings of OFC 2005, OWA6, Anaheim.

    Google Scholar 

  • Ohara, T., Takara, H., Yamamoto, T., Masuda, H., Morioka, T., Abe, M., & Takahashi, H. (2006). Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. Journal of Lightwave Technology, 24(6), 2311–2317.

    Article  ADS  Google Scholar 

  • Okuno, T., Onishi, M., & Nishimura, M. (1998). Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber. IEEE Photonics Technology Letters, 10, 72–74.

    Article  ADS  Google Scholar 

  • Ortigosa-Blanch, A., Knight, J. C., & Russell, P. S. J. (2002). Pulse breaking and supercontinuum generation with 200-fs pump pulses in PCF. Journal of the Optical Society of America B, 19, 2567–2572.

    Article  ADS  Google Scholar 

  • Petersen, C. R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A., & Bang, O. (2014). Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 8, 830–834.

    Article  ADS  Google Scholar 

  • Phillips, C. R., Langrock, C., Pelc, J. S., Fejer, M. M., Jiang, J., Fermann, M. E., & Hartl, I. (2011). Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Optics Letters, 36(19), 3912–3914.

    Article  ADS  Google Scholar 

  • Pitois, S., Fatome, J., & Millot, G. (2002). Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal. Optics Letters, 27, 1729–1731.

    Article  ADS  Google Scholar 

  • Poli, F., Cucinotta, A., Selleri, S., & Bouk, A. H. (2004). Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers. IEEE Photonics Technology Letters, 16, 1065–1067.

    Article  ADS  Google Scholar 

  • Povazay, B., Bizheva, K., Unterhuber, A., Hermann, B., Sattmann, H., Fercher, A. F., Drexler, W., Apolonski, A., Wadsworth, W. J., Knight, J. C., Russell, P. S. J., Vetterlein, M., & Scherzer, E. (2002). Submicrometer axial resolution optical coherence tomography. Optics Letters, 27, 1800–1802.

    Article  ADS  Google Scholar 

  • Prabhakar, G., Gregg, P., Rishoj, L., Kristensen, P., & Ramachandran, S. (2019). Octave-wide supercontinuum generation of light-carrying orbital angular momentum. Optics Express, 27(8), 11547–11556.

    Article  ADS  Google Scholar 

  • Prabhu, M., Kim, N. S., & Ueda, K. (2000). Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser. Japanese Journal of Applied Physics, 39, L291–L293.

    Article  ADS  Google Scholar 

  • Proulx, A., Ménard, J., Hô, N., Laniel, J. M., Vallée, R., & Paré, C. (2003). Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers. Optics Express, 11, 3338–3345.

    Article  ADS  Google Scholar 

  • Qin, G., Yan, X., Kito, C., Liao, M., Chaudhari, C., Suzuki, T., & Ohishi, Y. (2009). Ultrabroadband supercontinuum generation from ultraviolet to 6.28 um in a fluoride fiber. Applied Physics Letters, 95, 161103.

    Article  ADS  Google Scholar 

  • Ranka, J. K., & Gaeta, A. L. (1998). Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses. Optics Letters, 23, 534–536.

    Article  ADS  Google Scholar 

  • Ranka, J. K., Windeler, R. S., & Stentz, A. J. (1999). Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Conference on lasers and electro-optics CLEO ’99 CPD8/1 -CPD8/2.

    Google Scholar 

  • Ranka, J. K., Windeler, R. S., & Stentz, A. J. (2000a). Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 25, 25–27.

    Article  ADS  Google Scholar 

  • Ranka, J. K., Windeler, R. S., & Stentz, A. J. (2000b). Optical properties of high-delta air-silica microstructure optical fibers. Optics Letters, 25, 796–798.

    Article  ADS  Google Scholar 

  • Reeves, W. H., Knight, J. C., Russell, P. S. J., & Roberts, P. J. (2002). Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 10, 609–613.

    Article  ADS  Google Scholar 

  • Reeves, W. H., Skryabin, D. V., Biancalana, F., Knight, J. C., Russell, P. S. J., Omenetto, F. G., Efimov, A., & Taylor, A. J. (2003). Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature, 424, 511–515.

    Article  ADS  Google Scholar 

  • Reid, D. T., Cormack, I. G., Wadsworth, W. J., Knight, J. C., & Russell, P. S. J. (2002). Soliton self-frequency shift effects in photonic crystal fibre. Journal of Modern Optics, 49, 757–767.

    Article  ADS  Google Scholar 

  • Ren, Y., Li, L., Xie, G., Yan, Y., Cao, Y., Huang, H., Ahmed, N., Zhao, Z., Liao, P., Zhang, C., Caire, G., Molisch, A., Tur, M., & Willner, A. E. (2017). Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing. IEEE Transactions on Wireless Communications, 16(5), 3151–3161.

    Article  Google Scholar 

  • Renversez, G., Kuhlmey, B., & McPhedran, R. (2003). Dispersion management with microstructured optical fibers: Ultraflattened chromatic dispersion with low losses. Optics Letters, 28, 989–991.

    Article  ADS  Google Scholar 

  • Richardson, D. J., Fini, J. M., & Nelson, L. E. (2013). Space-division multiplexing in optical fibres. Nature Photonics, 7(5), 354–362.

    Article  ADS  Google Scholar 

  • Safioui, J., Leo, F., Kuyken, B., Gorza, S.-P., Selvaraja, S. K., Baets, R., Emplit, P., Roelkens, G., & Massar, S. (2014). Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. Optics Express, 22(3), 3089–3097.

    Article  ADS  Google Scholar 

  • Saitoh, K., & Koshiba, M. (2004). Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 12, 2027–2032.

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M., Hasegawa, T., & Sasaoka, E. (2003). Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Optics Express, 11, 843–852.

    Article  ADS  Google Scholar 

  • Sanders, S. T. (2002). Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy. Applied Physics B, 75, 799–802.

    Article  Google Scholar 

  • Schenkel, B., Biegert, J., Keller, U., Vozzi, C., Nisoli, M., Sansone, G., Stagira, S., De Silvestri, S., & Svelto, O. (2003). Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Optics Letters, 28, 1987–1989.

    Article  ADS  Google Scholar 

  • Shank, C. V., Fork, R. L., Yen, R., & Stolen, R. H. (1982). Compression of femtosecond optical pulses. Applied Physics Letters, 40(9), 761.

    Article  ADS  Google Scholar 

  • Silva, F., Austin, D. R., Thai, A., Baudisch, M., Hemmer, M., Faccio, D., Couairon, A., & Biegert, J. (2012). Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nature Communications, 3, 807.

    Google Scholar 

  • Silvestre, E., Russell, P. S. J., Birks, T. A., & Knight, J. C. (1998). Analysis and design of an endlessly single-mode finned dielectric waveguide. Journal of the Optical Society of America A, 15, 3067–3075.

    Article  ADS  Google Scholar 

  • Singh, N., Hudson, D. D., Yu, Y., Grillet, C., Jackson, S. D., Casas-Bedoya, A., Read, A., Atanackovic, P., Duvall, S. G., Palomba, S., Luther-Davies, B., Madden, S., Moss, D. J., & Eggleton, B. J. (2015). Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica, 2(9), 797–802.

    Article  ADS  Google Scholar 

  • Singh, N., Xin, M., Vermeulen, D., Shtyrkova, K., Li, N., Callahan, P. T., Magden, E. S., Ruocco, A., Fahrenkopf, N., Baiocco, C., Kuo, B. P., Radic, S., Ippen, E., Kärtner, F. X., & Watts, M. R. (2018). Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm. Light: Science & Applications, 7, 17131.

    Article  ADS  Google Scholar 

  • Skryabin, D. V., Luan, F., Knight, J. C., & P. St. J. Russell. (2003). Soliton self-frequency shift cancellation in photonic crystal fibers. Science, 301(5640), 1705–1708.

    Article  ADS  Google Scholar 

  • Smith, W. L., Liu, P., & Bloembergen, N. (1977). Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser. Physical Review A, 15, 2396–2403.

    Article  ADS  Google Scholar 

  • Solli, D. R., Ropers, C., Koonath, P., & Jalali, B. (2007). Optical rogue waves. Nature, 450, 1054–1057.

    Article  ADS  Google Scholar 

  • Solli, D. R., Ropers, C., & Jalali, B. (2008). Active control of rogue waves for stimulated supercontinuum generation. Physical Review Letters, 101, 233902.

    Article  ADS  Google Scholar 

  • Sotobayashi, H., Chujo, W., & Ozeki, T. (2001). Bi-directional photonic conversion between 4×10 Gbit/s OTDM and WDM by optical time-gating wavelength interchange. Proceeding of OFC 2001, paper WM5, Ahaneim.

    Google Scholar 

  • Sotobayashi, H., Chujo, W., Konishi, A., & Ozeki, T. (2002a). Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDMx40-Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization. Journal of the Optical Society of America B, 19(11), 2803.

    Article  ADS  Google Scholar 

  • Sotobayashi, H., Chujo, W., & Kitayama, K. (2002b). Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels x 10 Gbits/s). Journal of the Optical Society of America B, 19(11), 2810.

    Article  ADS  Google Scholar 

  • Stibenz, G., & Steinmeyer, G. (2004). High dynamic range characterization of ultrabroadband white-light continuum pulses. Optics Express, 12, 6319–6325.

    Article  ADS  Google Scholar 

  • Südmeyer, T., Brunner, F., Innerhofer, E., Paschotta, R., Furusawa, K., Baggett, J. C., Monro, T. M., Richardson, D. J., & Keller, U. (2003). Nonlinear femtosecond pulse compression at high average power levels by use of a large mode-area holey fiber. Optics Letters, 28, 1951–1953.

    Article  ADS  Google Scholar 

  • Swiderski, J., & Michalska, M. (2013). Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers. Optics & Laser Technology, 52, 75–80.

    Article  ADS  Google Scholar 

  • Sztul, H. I., Kartazayev, V., & Alfano, R. R. (2006). Laguerre–Gaussian supercontinuum. Optics Letters, 31(18), 2725–2727.

    Article  ADS  Google Scholar 

  • Tadakuma, M., Aso, O., & Namiki, S. (2000). A 104 GHz 328 fs soliton pulse train generation through a comb-like dispersion profiled fiber using short high nonlinearity dispersion shifted fibers. Presented at OFC 2000.

    Google Scholar 

  • Tai, K., Tomita, A., Jewell, J. L., & Hasegawa, A. (1986). Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability. Applied Physics Letters, 49, 236–238.

    Article  ADS  Google Scholar 

  • Takada, K., Abe, M., Shibata, T., & Okamoto, K. (2002). 5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation. Electronics Letters, 38(12), 572–573.

    Google Scholar 

  • Takanayagi, J., Nishizawa, N., Nagai, H., Yoshida, M., & Goto, T. (2005). Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system. IEEE Photonics Technology Letters, 17, 37–39.

    Article  ADS  Google Scholar 

  • Takara, T., Ohara, T., Mori, K., Sato, K., Yamada, E., Jinguji, K., Inoue, Y., Shibata, T., Morioka, T., & Sato, K.-I. (2000). More than 1000 channel optical frequency chain generation from a single supercontinuum source with 12.5 GHz channel spacing. Electronics Letters, 36, 2089–2090.

    Article  ADS  Google Scholar 

  • Takara, H., Ohara, T., & Sato, K. (2003a). Over 1000 km DWDM transmission with supercontinuum multi-carrier source. Electronics Letters, 39(14), 1078.

    Article  ADS  Google Scholar 

  • Takara, H., Masuda, H., Mori, K., Sato, K., Inoue, Y., Ohara, T., Mori, A., Kohtoku, M., Miyamoto, Y., Morioka, T., & Kawanishi, S. (2003b). 124 nm seamless bandwidth, 313x10 Gbit/s DWDM transmission. Electronics Letters, 39(382–383), 2003.

    Google Scholar 

  • Tamura, K., & Nakazawa, M. (1998). Timing jitter of solitons compressed in dispersion-decreasing fibers. Optics Letters, 23, 1360–1362.

    Article  ADS  Google Scholar 

  • Tamura, K., Yoshida, E., & Nakazawa, M. (1996). Generation of 10 GHz pulse trains at 16 wavelengths by spectrally slicing a high power femtosecond source. Electronics Letters, 32(18), 1691.

    Article  ADS  Google Scholar 

  • Tamura, K., Kubota, H., & Nakazawa, M. (2000). Fundamentals of stable continuum generation at high repetition rates. Journal of Quantum Electronics, 36(7), 773–779.

    Article  ADS  Google Scholar 

  • Teipel, J., Franke, K., Turke, D., Warken, F., Meiser, D., Leuschner, M., & Giessen, H. (2003). Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses. Applied Physics B, 77, 245–251.

    Article  Google Scholar 

  • Tianprateep, M., Tada, J., Yamazaki, T., & Kannari, F. (2004). Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique. Japanese Journal of Applied Physics, 43, 8059–8063.

    Article  ADS  Google Scholar 

  • Tomlinson, W. J., Stolen, R. J., & Shank, C. V. (1984). Compression of optical pulses chirped by self-phase modulation in fibers. Journal of the Optical Society of America B, 1, 139–149.

    Article  ADS  Google Scholar 

  • Vanholsbeeck, F., Martin-Lopez, S., González-Herráez, M., & Coen, S. (2005). The role of pump incoherence in continuous-wave supercontinuum generation. Optics Express, 13(17), 6615–6625.

    Article  ADS  Google Scholar 

  • Vergeles, S., & Turitsyn, S. K. (2011). Optical rogue waves in telecommunication data streams. Physical Review A, 83, 061801.

    Article  ADS  Google Scholar 

  • Wadsworth, W. J., Ortigosa-Blanch, A., Knight, J. C., Birks, T. A., Man, T. P. M., & P. St. J. Russell. (2002). Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source. Journal of the Optical Society of America B, 19, 2148–2155.

    Article  ADS  Google Scholar 

  • Wang, Y. M., Zhao, Y. H., Nelson, J. S., Chen, Z. P., & Windeler, R. S. (2003a). Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 28, 182–184.

    Article  ADS  Google Scholar 

  • Wang, Y. M., Nelson, J. S., Chen, Z. P., Reiser, B. J., Chuck, R. S., & Windeler, R. S. (2003b). Optimal wavelength for ultrahigh-resolution optical coherence tomography. Optics Express, 11, 1411–1417.

    Article  ADS  Google Scholar 

  • Wang, D., Jiang, H., Wu, S., Yang, H., Gong, Q., Xiang, J., & Xu, G. (2003c). An investigation of solvent effects on the optical properties of dye IR-140 using the pump supercontinuum-probing technique. Journal of Optics A: Pure and Applied Optics, 5, 515–519.

    Article  ADS  Google Scholar 

  • Wang, J., Yang, J. Y., Fazal, I. M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., & Willner, A. E. (2012). Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 6, 488–496.

    Article  ADS  Google Scholar 

  • Washburn, B. R., & Newbury, N. R. (2004). Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber. Optics Express, 12, 2166–2175.

    Article  ADS  Google Scholar 

  • Werncke, W., Lau, A., Pfeiffer, M., Lenz, K., Weigmann, H.-J., & Thuy, C. D. (1972). An anomalous frequency broadening in water. Optics Communications, 4, 413–415.

    Article  ADS  Google Scholar 

  • Willner, A. E., & Liu, C. (2020). Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links. Nanophotonics, 10(1), 225–233.

    Article  Google Scholar 

  • Willner, A. E., Huang, H., Yan, Y., Ren, Y., Ahmed, N., Xie, G., Bao, C., Li, L., Cao, Y., Zhao, Z., Wang, J., Lavery, M. P. J., Tur, M., Ramachandran, S., Molisch, A. F., Ashrafi, N., & Ashrafi, S. (2015). Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 7, 66–106.

    Article  ADS  Google Scholar 

  • Wright, A. J., Girkin, J. M., Gibson, G. M., Leach, J., & Padgett, M. J. (2008). Transfer of orbital angular momentum from a super-continuum, white-light beam. Optics Express, 16(13), 9495–9500.

    Article  ADS  Google Scholar 

  • Yan, Y., Xie, G., Lavery, M. P. J., Huang, H., Ahmed, N., Bao, C., Ren, Y., Cao, Y., Li, L., Zhao, Z., Molisch, A. F., Tur, M., Padgett, M. J., & Willner, A. E. (2014). High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications, 5, 4876.

    Article  ADS  Google Scholar 

  • Ye, J., & Cundiff, S. T. (Eds.). (2005). Femtosecond optical frequency comb technology. Springer.

    Google Scholar 

  • Ye, Q., Xu, C., Liu, X., Knox, W. H., Yan, M. F., Windeler, R. S., & Eggleton, B. (2002). Dispersion measurement of tapered air–silica microstructure fiber by white-light interferometry. Applied Optics, 41, 4467–4470.

    Article  ADS  Google Scholar 

  • Yeom, D.-I., Mägi, E. C., Lamont, M. R. E., Roelens, M. A. F., Fu, L., & Eggleton, B. J. (2008). Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Optics Letters, 33(7), 660–662.

    Article  ADS  Google Scholar 

  • Yusoff, Z., Petropoulos, P., Furusawa, K., Monro, T. M., & Richardson, D. J. (2003). A 36 channel x 10 GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fibre. IEEE Photonics Technology Letters, 15(12), 1689–1691.

    Article  ADS  Google Scholar 

  • Zeller, J., Jasapara, J., Rudolph, W., & Sheik-Bahae, M. (2000). Spectro-temporal characterization of a femtosecond white-light continuum generation by transient-grating diffraction. Optics Communications, 185, 133–137.

    Article  ADS  Google Scholar 

  • Zhang, R., Teipel, J., & Giessen, H. (2006). Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Optics Express, 14(15), 6800–6812.

    Article  ADS  Google Scholar 

  • Zheltikov, A. M. (2000). Holey fibers. Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences, 43, 1125–1136.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (FSUS-2020-0036); Russian Foundation for Basic Research (grant No. 18-29-20025). The work of S.K.T. was supported by the Russian Science Foundation (Grant No. 17-72-30006). The work of J.D.A.C. was supported by the Spanish Ministry of Science and Innovation (Grant RTI2018-097957-B-C33) and Comunidad de Madrid (Grant S2018/NMT-4326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Smirnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smirnov, S.V., Ania-Castañón, J.D., Kobtsev, S., Turitsyn, S.K. (2022). Supercontinuum in Telecom Applications. In: Alfano, R.R. (eds) The Supercontinuum Laser Source. Springer, Cham. https://doi.org/10.1007/978-3-031-06197-4_9

Download citation

Publish with us

Policies and ethics