Skip to main content
Log in

Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Numerical simulations are used to study how fiber supercontinuum generation seeded by picosecond pulses can be actively controlled through the use of input pulse modulation. By carrying out multiple simulations in the presence of noise, we show how tailored supercontinuum spectra with increased bandwidth and improved stability can be generated using an input envelope modulation of appropriate frequency and depth. The results are discussed in terms of the nonlinear propagation dynamics and pump depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)

    Article  ADS  Google Scholar 

  2. A.V. Husakou, J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87(1–4), 203901 (2001)

    Article  ADS  Google Scholar 

  3. A.L. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers. Opt. Lett. 27, 924–926 (2002)

    Article  ADS  Google Scholar 

  4. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett. 90(1–4), 113904 (2003)

    Article  ADS  Google Scholar 

  5. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    Article  ADS  Google Scholar 

  6. M.N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J.P. Gordon, D.S. Chemla, Broad bandwidths from frequency-shifting solitons in fibers. Opt. Lett. 14, 370–372 (1989)

    Article  ADS  Google Scholar 

  7. M.N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J.P. Gordon, D.S. Chemla, Femtosecond distributed soliton spectrum in fibers. J. Opt. Soc. Am. B 6, 1149–1158 (1989)

    Article  ADS  Google Scholar 

  8. F. Vanholsbeeck, S. Martín-López, M. González-Herráez, S. Coen, The role of pump incoherence in continuous-wave supercontinuum generation. Opt. Express 13, 6615–6625 (2005)

    Article  ADS  Google Scholar 

  9. S.M. Kobtsev, S.V. Kukarin, N.V. Fateev, S.V. Smirnov, Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre. Appl. Phys. B 81, 265–269 (2005)

    Article  ADS  Google Scholar 

  10. J.N. Kutz, C. Lyngå, B.J. Eggleton, Enhanced supercontinuum generation through dispersion-management. Opt. Express 13, 3989–3998 (2005)

    Article  ADS  Google Scholar 

  11. M.H. Frosz, O. Bang, A. Bjarklev, Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. Opt. Express 14, 9391–9407 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-20-9391

    Article  ADS  Google Scholar 

  12. A. Demircan, U. Bandelow, Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation. Appl. Phys. B 86, 31–39 (2007)

    Article  ADS  Google Scholar 

  13. B.A. Cumberland, J.C. Travers, S.V. Popov, J.R. Taylor, 29 W High power CW supercontinuum source. Opt. Express 16, 5954–5962 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5954

    Article  ADS  Google Scholar 

  14. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1058 (2007)

    Article  ADS  Google Scholar 

  15. J.M. Dudley, G. Genty, B.J. Eggleton, Harnessing and control of optical rogue waves in supercontinuum generation. Opt. Express 16, 3644–3651 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-6-3644

    Article  ADS  Google Scholar 

  16. C.R. Menyuk, Non-Gaussian corrections to the Gordon–Haus distribution resulting from soliton interactions. Opt. Lett. 20, 285–287 (1995)

    Article  ADS  Google Scholar 

  17. F.K. Abdullaev, S.A. Darmanyan, F. Lederer, Evolution of randomly modulated solitons in optical fibers. Opt. Commun. 126, 89–94 (1996)

    Article  ADS  Google Scholar 

  18. T. Georges, Study of the non-Gaussian timing jitter statistics induced by soliton interaction and filtering. Opt. Commun. 123, 617–623 (1996)

    Article  ADS  Google Scholar 

  19. G.E. Falkovich, M.G. Stepanov, S.K. Turitsyn, Statistics of interacting optical solitons. Phys. Rev. E 64, 067602 (2001)

    Article  ADS  Google Scholar 

  20. S.A. Derevyanko, S.K. Turitsyn, D.A. Yakushev, Non-Gaussian statistics of an optical soliton in the presence of amplified spontaneous emission. Opt. Lett. 28, 2097–2099 (2003)

    Article  ADS  Google Scholar 

  21. Y.J. Chung, A. Peleg, Strongly non-Gaussian statistics of optical soliton parameters due to collisions in the presence of delayed Raman response. Nonlinearity 18, 1555–1574 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. A. Peleg, Intermittent dynamics, strong correlations, and bit-error-rate in multichannel optical fiber communication systems. Phys. Lett. A 360, 533–538 (2007)

    Article  ADS  Google Scholar 

  23. A. Peleg, Raman cross talk between optical solitons as a random cascade model. arxiv:0706.4333v1 (2007)

  24. N. Korneev, E.A. Kuzin, B. Ibarra-Escamilla, M. Bello-Jimènez, A. Flores-Rosas, Initial development of supercontinuum in fibers with anomalous dispersion pumped by nanosecond-long pulses. Opt. Express 16, 2636–2645 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-4-2636

    Article  ADS  Google Scholar 

  25. S.M. Kobtsev, S.V. Kukarin, S.V. Smirnov, N.V. Fateev, Control of the spectral and coherent properties of a supercontinuum with pronounced soliton structures in the spectrum by using phase-modulated femtosecond pump pulses. Quantum Electron. 37, 1038–1042 (2007)

    Article  ADS  Google Scholar 

  26. D. Türke, J. Teipel, H. Giessen, Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibres. Appl. Phys. B 92, 159 163 (2008)

    Article  Google Scholar 

  27. A. Efimov, A.J. Taylor, Supercontinuum generation and soliton timing jitter in SF6 soft glass photonic crystal fibers. Opt. Express 16, 5942–5953 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5942

    Article  ADS  Google Scholar 

  28. T.J. Ellingham, J.D. Ania-Castañón, S.K. Turitsyn, A.A. Pustovskikh, S.M. Kobtsev, M.P. Fedoruk, Dual-pump Raman amplification with increased flatness using modulation instability. Opt. Express 13, 1079–1084 (2005)

    Article  ADS  Google Scholar 

  29. S.V. Smirnov, J.D. Ania-Castañón, T.J. Ellingham, S.M. Kobtsev, S.V. Kukarin, S.K. Turitsyn, Optical spectral broadening and supercontinuum generation in telecom applications. Opt. Fiber. Technol. 12, 122–147 (2006)

    Article  ADS  Google Scholar 

  30. S.M. Kobtsev, S.V. Smirnov, Influence of noise amplification on generation of regular short pulse trains in optical fibre pumped by intensity-modulated CW radiation. Opt. Express 16, 7428–7434 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-10-7428

    Article  ADS  Google Scholar 

  31. D.R. Solli, C. Ropers, B. Jalali, Demonstration of stimulated supercontinuum generation—an optical tipping point. arXiv:0801.4066v1 [physics.optics] (2008)

  32. K.J. Blow, D. Wood, Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. 25, 2665–2673 (1989)

    Article  ADS  Google Scholar 

  33. R.H. Stolen, J.P. Gordon, W.J. Tomlinson, H.A. Haus, Raman response function of silica-core fibers. J. Opt. Soc. Am. B 6, 1159–1166 (1989)

    Article  ADS  Google Scholar 

  34. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, San Diego, 2006)

    Google Scholar 

  35. P.D. Drummond, J.F. Corney, Quantum noise in optical fibers. I. Stochastic equations. J. Opt. Soc. Am. B 18, 139–152 (2001)

    Article  ADS  Google Scholar 

  36. E.J. Greer, D.M. Patrick, P.G.J. Wigley, J.R. Taylor, Generation of 2 THz repetition rate pulse trains through induced modulational instability. Electron. Lett. 25, 1246–1248 (1989)

    Article  Google Scholar 

  37. P.V. Mamyshev, S.V. Chernikov, E.M. Dianov, Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines. IEEE J. Quantum Electron. 27, 2347–2355 (1991)

    Article  ADS  Google Scholar 

  38. J.M. Dudley, F. Gutty, S. Pitois, G. Millot, Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers. IEEE J. Quantum Electron. 37, 587–594 (2001)

    Article  ADS  Google Scholar 

  39. J.M. Dudley, S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27, 1180–1182 (2002)

    Article  ADS  Google Scholar 

  40. F. Vanholsbeeck, Ph. Emplit, S. Coen, Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain. Opt. Lett. 28, 1960–1962 (2003)

    Article  ADS  Google Scholar 

  41. G. Cappellini, S. Trillo, Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects. J. Opt. Soc. Am. B 8, 824–838 (1991)

    Article  ADS  Google Scholar 

  42. F. Luan, D.V. Skryabin, A.V. Yulin, J.C. Knight, Energy exchange between colliding solitons in photonic crystal fibers. Opt. Express 14, 9844–9853 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-21-9844

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Dudley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genty, G., Dudley, J.M. & Eggleton, B.J. Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime. Appl. Phys. B 94, 187–194 (2009). https://doi.org/10.1007/s00340-008-3274-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3274-1

PACS

Navigation