Skip to main content

Fetal Aortic Isthmus and Descending Aorta

  • Chapter
  • First Online:
Doppler Ultrasound in Obstetrics and Gynecology

Abstract

Doppler evaluation of the aortic isthmus, located between the left subclavian artery and the ductus arteriosus, can provide important information on fetal hemodynamic adaptation/deterioration related to intrauterine hypoxia. The aortic isthmus acts as a shunt deviating part of the blood flow from ductus arteriosus to the cranial circulation to maintain a normal oxygen delivery to the fetal brain. The aortic isthmus Doppler waveforms can be recorded in a sagittal plane or in a cross-sectional plane (at the level of three vessel view) of fetal thorax with similar results. Various semiquantitative indices have been proposed to describe the velocity waveform of aortic isthmus, e.g., isthmus flow index (IFI) based on the analysis of time velocity integrals of the systolic and diastolic components of the waveform, the aortic isthmus pulsatility index (PI), and the isthmic systolic index. In severely growth restricted fetuses, an abnormal aortic isthmus blood flow precedes changes in the ductus venosus Doppler waveform by 1 week. An abnormal aortic isthmus blood flow is associated with increased risk of adverse perinatal outcomes. Ultrasound imaging and Doppler evaluation of the aortic isthmus importantly contribute to the identification of fetuses with coarctation of the aorta.

Early Doppler studies of the fetal descending aorta focused on quantitative estimation of volume blood flow from the time-averaged mean blood velocity signals and aortic diameter, and reference values were established. In normal pregnancies as gestation advances, the percentage of blood flow forwarded to fetal organs and limbs increases and the percentage of blood flow forwarded to the placenta decreases. The estimation of aortic blood flow was found to be open to methodological errors; therefore, for clinical purposes, the waveform of maximum blood velocities was analyzed and characterized by the PI. Normally, there are positive flow velocities throughout the cardiac cycle both in the thoracic and abdominal fetal descending aorta. It was recognized early that the absence or reversal of end-diastolic flow velocities (ARED-flow) was associated with adverse outcome of pregnancy. By combining the PI and information on presence/absence or reversal of the end-diastolic flow, the aortic waveforms were categorized into four semiquantitative blood flow classes (BFC) that proved to have great clinical potential for characterization of fetal condition. It was found that the waveform changes in the descending aorta parallel those in the umbilical artery and the BFC approach was applied for the evaluation of umbilical artery Doppler waveforms. Simultaneous recording of Doppler signals from the fetal abdominal aorta and from the inferior vena cava can facilitate the classification of fetal arrhythmias.

Abnormal flow velocity patterns in the fetal aortic isthmus and descending aorta in high-risk pregnancies are associated with increased perinatal mortality and morbidity and with impaired postnatal neurocognitive development. Thus, Doppler examination of the two vessel areas, together with examination of other vessel beds, can be applied for a more detailed study of redistribution of flow in the presence of fetal hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fouron JC. The unrecognized physiological and clinical significance of the fetal aortic isthmus. Ultrasound Obstet Gynecol. 2003;22:441–7.

    Article  Google Scholar 

  2. Acharya G, Tronnes A, Rasanen J. Aortic isthmus and cardiac monitoring of the growth-restricted fetus. Clin Perinatol. 2011;38:113–25.

    Article  Google Scholar 

  3. Tynan D, Alphonse J, Henry A, Welsh AW. The aortic isthmus: a significant yet underexplored watershed of the fetal circulation. Fetal Diagn Ther. 2016;40:81–93.

    Article  Google Scholar 

  4. Hornberger LK, Weintraub RG, Pesonen E, et al. Echocardiographic study of the morphology and growth of the aortic arch in the human fetus. Observations related to the prenatal diagnosis of coarctation. Circulation. 1992;86:741–7.

    Article  CAS  Google Scholar 

  5. Rudolph AM, Heyman MA, Spitznas U. Hemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol. 1972;30:514–25.

    Article  CAS  Google Scholar 

  6. Angelini A, Allan LD, Anderson RH, Crawford DC, Chita SK, Ho SY. Measurements of the dimensions of the aortic and pulmonary pathways in the human fetus: a correlative echocardiographic and morphometric study. Br Heart J. 1988;60:221–6.

    Article  CAS  Google Scholar 

  7. Vimpeli T, Huhtala H, Wilsgaard T, Acharya G. Fetal aortic isthmus blood flow and the fraction of cardiac output distributed to the upper body and brain at 11–20 weeks of gestation. Ultrasound Obstet Gynecol. 2009;33:538–44.

    Article  CAS  Google Scholar 

  8. Nomiyama M, Ueda Y, Toyota Y, Kawano H. Fetal aortic isthmus growth and morphology in late gestation. Ultrasound Obstet Gynecol. 2002;19:153–7.

    Article  CAS  Google Scholar 

  9. Fouron JC, Siles A, Montanari L, et al. Feasibility and reliability of Doppler flow recordings in the fetal aortic isthmus: a multicenter evaluation. Ultrasound Obstet Gynecol. 2009;33:690–3.

    Article  Google Scholar 

  10. Pasquini L, Mellander M, Seale A, et al. Z-scores of the fetal aortic isthmus and duct: an aid to assessing arch hypoplasia. Ultrasound Obstet Gynecol. 2007;29:628–33.

    Article  CAS  Google Scholar 

  11. Acharya G. Technical aspects of aortic isthmus Doppler velocimetry in human fetuses. Ultrasound Obstet Gynecol. 2009;33:628–33.

    Article  CAS  Google Scholar 

  12. Garcia-Canadilla P, Crispi F, Cruz-Lemini M, et al. Understanding the aortic isthmus Doppler profile and its changes with gestational age using a lumped model of the fetal circulation. Fetal Diagn Ther. 2017;41:41–50.

    Article  Google Scholar 

  13. Schmidt KG, Silverman NH, Rudolph AM. Phasic flow events at the aortic isthmus -ductus arteriosus junction and branch pulmonary artery evaluated by multimodal ultrasonography in fetal lambs. Am J Obstet Gynecol. 1998;179:1338–47.

    Article  CAS  Google Scholar 

  14. Ruskamp J, Fouron JC, Gosselin J, Raboisson MJ, Infante-Rivard C, Proulx F. Reference values for an index of fetal aortic isthmus blood flow during the second half of pregnancy. Ultrasound Obstet Gynecol. 2003;21:441–4.

    Article  CAS  Google Scholar 

  15. Del Río M, Martínez JM, Figueras F, et al. Doppler assessment of fetal aortic isthmus blood flow in two different sonographic planes during the second half of gestation. Ultrasound Obstet Gynecol. 2005;26:170–4.

    Article  Google Scholar 

  16. Del Río M, Martínez JM, Figueras F, et al. Reference ranges for Doppler parameters of the fetal aortic isthmus during the second half of pregnancy. Ultrasound Obstet Gynecol. 2006;28:71–6.

    Article  Google Scholar 

  17. Chabaneix J, Fouron JC. Profiling left and right ventricular proportional output during fetal life with a novel systolic index in the aortic isthmus. Ultrasound Obstet Gynecol. 2014;44:176–81.

    Article  CAS  Google Scholar 

  18. Rychik J. Comments on: profiling left and right ventricular proportional output during fetal life with a novel systolic index in the aortic isthmus. Ultrasound Obstet Gynecol. 2014;44:136.

    Article  CAS  Google Scholar 

  19. Bonnin P, Fouron J, Teyssier G, Sonesson S, Skoll A. Quantitative assessment of circulatory changes in the fetal aortic isthmus during progressive increase of resistance to umbilical blood flow. Circulation. 1993;88:216–22.

    Article  CAS  Google Scholar 

  20. Fouron JC, Gosselin J, Raboisson MJ, et al. The relationship between an aortic isthmus blood flow velocity index and the postnatal neurodevelopmental status of fetuses with placental circulatory insufficiency. Am J Obstet Gynecol. 2005;192:497–503.

    Article  Google Scholar 

  21. Fouron JC, Skoll A, Sonesson SE, Pfizenmaier M, Jaeggi E, Lessard M. Relationship between flow through the fetal aortic isthmus and cerebral oxygenation during acute placental circulatory insufficiency in ovine fetuses. Am J Obstet Gynecol. 1999;181:1102–7.

    Article  CAS  Google Scholar 

  22. Lecarpentier E, Cordier AG, Proulx F, et al. Hemodynamic impact of absent or reverse end-diastolic flow in the two umbilical arteries in growth-restricted fetuses. PLoS One. 2013;8:e81160.

    Article  Google Scholar 

  23. Sonesson SE, Fouron JC. Doppler velocimetry of the aortic isthmus in human fetuses with abnormal velocity waveforms in the umbilical artery. Ultrasound Obstet Gynecol. 1997;10:107–11.

    Article  CAS  Google Scholar 

  24. Mäkikallio K, Jouppila P, Räsänen J. Retrograde net blood flow in the aortic isthmus in relation to human fetal arterial and venous circulations. Ultrasound Obstet Gynecol. 2002;19:147–52.

    Article  Google Scholar 

  25. Mäkikallio K, Jouppila P, Räsänen J. Retrograde aortic isthmus net blood flow and human fetal cardiac function in placental insufficiency. Ultrasound Obstet Gynecol. 2003;22:351–7.

    Article  Google Scholar 

  26. Hernández-Andrade E, Crispi F, Benavides-Serralde JA, et al. Contribution of the myocardial performance index and aortic isthmus blood flow index to predicting mortality in preterm growth-restricted fetuses. Ultrasound Obstet Gynecol. 2009;34:430–6.

    Article  Google Scholar 

  27. Del Río M, Martínez JM, Figueras F, et al. Doppler assessment of the aortic isthmus and perinatal outcome in preterm fetuses with severe intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;31:41–7.

    Article  Google Scholar 

  28. Figueras F, Benavides A, Del Río M, et al. Monitoring of fetuses with intrauterine growth restriction: longitudinal changes in ductus venosus and aortic isthmus flow. Ultrasound Obstet Gynecol. 2009;33:39–43.

    Article  CAS  Google Scholar 

  29. Cruz-Martinez R, Figueras F, Benavides-Serralde A, Crispi F, Hernández-Andrade E, Gratacós E. Sequence of changes in myocardial performance index in relation to aortic isthmus and ductus venosus Doppler in fetuses with early-onset intrauterine growth restriction. Ultrasound Obstet Gynecol. 2011;38:179–84.

    Article  CAS  Google Scholar 

  30. Cruz-Martinez R, Tenorio V, Padilla N, Crispi F, Figueras F, Gratacos E. Risk of ultrasound-detected neonatal brain abnormalities in intrauterine growth-restricted fetuses born between 28 and 34 weeks’ gestation: relationship with gestational age at birth and fetal Doppler parameters. Ultrasound Obstet Gynecol. 2015;46:452–9.

    Article  CAS  Google Scholar 

  31. Kennelly MM, Farah N, Hogan J, Reilly A, Turner MJ, Stuart B. Longitudinal study of aortic isthmus Doppler in appropriately grown and small-for-gestational-age fetuses with normal and abnormal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2012;39:414–20.

    Article  CAS  Google Scholar 

  32. Villalaín C, Herraiz I, Quezada MS, et al. Prognostic value of the aortic isthmus Doppler assessment on late onset fetal growth restriction. J Perinat Med. 2019;47:212–7.

    Article  Google Scholar 

  33. Hoffman J, Kaplan. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  Google Scholar 

  34. Kenny D, Hijazi ZM. Coarctation of the aorta: from fetal life to adulthood. Cardiol J. 2011;18:487–95.

    Article  Google Scholar 

  35. Hornberger LK, Sahn DJ, Kleinman CS, Copel J, Silverman NH. Antenatal diagnosis of coarctation of the aorta: a multicenter experience. J Am Coll Cardiol. 1994;23:417–23.

    Article  CAS  Google Scholar 

  36. Leduc F, Delabaere A, Gendron R, et al. Aortic isthmus flow recording predicts the outcome of the recipient twin after laser coagulation in twin-twin transfusion syndrome. Fetal Diagn Ther. 2018;44:135–41.

    Article  Google Scholar 

  37. Kim SY, Lee SP, Lee CM, Jung SY, Park HN. Doppler assessment of fetal aortic isthmus flow in twin. Obstet Gynecol Sci. 2015;58:17–23.

    Article  Google Scholar 

  38. Almström H, Sonesson SE. Doppler echocardiographic assessment of fetal blood flow redistribution during maternal hyperoxygenation. Ultrasound Obstet Gynecol. 1996;8:256–61.

    Article  Google Scholar 

  39. Brantberg A, Sonesson SE. Central arterial hemodynamics in small-for-gestational-age fetuses before and during maternal hyperoxygenation: a Doppler velocimetric study with particular attention to the aortic isthmus. Ultrasound Obstet Gynecol. 1999;14:237–43.

    Article  CAS  Google Scholar 

  40. Edwards LA, Lara DA, Sanz Cortes M, et al. Chronic maternal hyperoxygenation and effect on cerebral and placental vasoregulation and neurodevelopment in fetuses with left heart hypoplasia. Fetal Diagn Ther. 2019;46:45–57.

    Article  Google Scholar 

  41. FitzGerald DE, Drumm J. Non-invasive measurement of human fetal circulation using ultrasound: a new method. BMJ. 1977;2:1450–1.

    Article  CAS  Google Scholar 

  42. McCallum WD, Williams CB, Napel S, Diagle RE. Fetal blood velocity waveforms. Am J Obstet Gynecol. 1978;132:425–9.

    Article  CAS  Google Scholar 

  43. Gill RW. Pulsed Doppler with B-mode imaging for quantitative blood flow measurement. Ultrasound Med Biol. 1979;5:223–35.

    Article  CAS  Google Scholar 

  44. Eik-Nes SH, Brubakk AO, Ulstein MK. Measurement of human fetal blood flow. BMJ. 1980;2:283–4.

    Google Scholar 

  45. Eik-Nes SH, Maršál K, Brubbakk AO, Kristoffersen K, Ulstein M. Ultrasonic measurements of human fetal blood flow. J Biomed Eng. 1982;4:28–36.

    Article  CAS  Google Scholar 

  46. Jouppila P, Kirkinen P. Increased vascular resistance in the descending aorta of the human fetus in hypoxia. Br J Obstet Gynaecol. 1984;91:853–6.

    Article  CAS  Google Scholar 

  47. Eik-Nes SH, Maršál K, Kristoffersen K, Vernersson E. Noninvasive Messung des fetalen Blutstromes mittels Ultraschall. Ultraschall Med. 1981;2:226–31.

    Article  Google Scholar 

  48. Sindberg Eriksen P, Gennser G, Lindström K, Benthin M, Dahl P. Pulse wave recording – development of a method for investigating foetal circulation in utero. J Med Eng Technol. 1985;9:18–27.

    Article  CAS  Google Scholar 

  49. Saburi Y, Mori A, Yasui I, Makino T, Iwabuchi M. Fetal aortic blood flow assessment from the relationship between fetal aortic diameter pulse and flow velocity waveforms during fetal development. Early Hum Dev. 2001;65:57–70.

    Article  CAS  Google Scholar 

  50. Stale H, Maršál K, Gennser G, et al. Aortic diameter pulse waves and blood flow velocity in the small for gestational age fetus. Ultrasound Med Biol. 1991;17:471–8.

    Article  CAS  Google Scholar 

  51. Eik-Nes SH, Maršál K, Kristoffersen K. Methodology and basic problems related to blood flow studies in the human fetus. Ultrasound Med Biol. 1984;10:329–37.

    Article  CAS  Google Scholar 

  52. Veille JC, Tavill M, Sivakoff M, et al. Evaluation of pulsed Doppler echocardiography for measurement of aortic blood flow in the fetal lamb. Am J Obstet Gynecol. 1989;161:1610–4.

    Article  CAS  Google Scholar 

  53. Schmidt KG, Di Tommaso M, Silverman NH, Rudolph AM. Doppler echocardiographic assessment of fetal descending aortic and umbilical blood flows: validation studies in fetal lambs. Circulation. 1991;83:1731–7.

    Article  CAS  Google Scholar 

  54. Bonnefous O, Pesque P. Time domain formulation of pulsed ultrasound and blood velocity estimation by cross correlation. Ultrason Imaging. 1986;8:73.

    Article  CAS  Google Scholar 

  55. Länne T, Solvig J, Eriksson A, Olofsson PÅ, Maršál K, Hansen F. Time domain ultrasonography—a reliable method of percutaneous volume flow measurement in large arteries. Clin Physiol. 1997;17:371–82.

    Article  Google Scholar 

  56. Brodszki J, Gardiner HM, Eriksson A, Stale H, Maršál K. Reproducibility of ultrasonic fetal volume blood flow measurements. Clin Physiol. 1998;18:479–85.

    Article  CAS  Google Scholar 

  57. Gardiner H, Brodszki J, Maršál K. Ventriculovascular physiology of the growth-restricted fetus. Ultrasound Obstet Gynecol. 2001;18:47–53.

    Article  CAS  Google Scholar 

  58. Konje JC, Abrams K, Bell SC, de Chazal RC, Taylor DJ. The application of color power angiography to the longitudinal quantification of blood flow volume in the fetal middle cerebral arteries, ascending aorta, descending aorta, and renal arteries during gestation. Am J Obstet Gynecol. 2000;182:393–400.

    Article  CAS  Google Scholar 

  59. Salehi D, Sun L, Steding-Ehrenborg K, et al. Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating. J Cardiovasc Magnetic Resonance. 2019;21:74. https://doi.org/10.1186/s12968-019-0586-8.

    Article  Google Scholar 

  60. Lingman G, Laurin J, Maršál K. Circulatory changes in fetuses with imminent asphyxia. Biol Neonate. 1986;49:66–73.

    Article  CAS  Google Scholar 

  61. Laurin J, Lingman G, Maršál K, Persson PH. Fetal blood flow in pregnancies complicated by intrauterine growth retardation. Obstet Gynecol. 1978;69:895–902.

    Google Scholar 

  62. Gudmundsson S, Maršál K. Blood velocity waveforms in the fetal aorta and umbilical artery as predictors of fetal outcome: a comparison. Am J Perinatol. 1991;8:1–6.

    Article  CAS  Google Scholar 

  63. European Association of Perinatal Medicine. Regulation for the use of Doppler technology in perinatal medicine. Consensus of Barcelona. Barcelona: Instituto Dexeus; 1989. p. 20, 26.

    Google Scholar 

  64. Lingman G, Maršál K. Fetal central blood circulation in the third trimester of normal pregnancy: longitudinal study. II. Aortic blood velocity waveform. Early Hum Dev. 1986;13:151–9.

    Article  CAS  Google Scholar 

  65. Mills CJ, Gabe IT, Gault JH, et al. Pressure-flow relationships and vascular impedance in man. Cardiovasc Res. 1970;4:405–17.

    Article  CAS  Google Scholar 

  66. Lingman G, Maršál K. Fetal central blood circulation in the third trimester of normal pregnancy: longitudinal study. I. Aortic and umbilical blood flow. Early Hum Dev. 1986;13:137–50.

    Article  CAS  Google Scholar 

  67. Griffin D, Cohen-Overbeek T, Campbell S. Fetal and utero-placental blood flow. Clin Obstet Gynecol. 1983;10:565–602.

    CAS  Google Scholar 

  68. Van Lierde M, Oberweis D, Thomas K. Ultrasonic measurement of aortic and umbilical blood flow in the human fetus. Obstet Gynecol. 1984;63:801–5.

    Google Scholar 

  69. Maršál K, Lindblad A, Lingman G, Eik-Nes SH. Blood flow in the fetal descending aorta: intrinsic factors affecting fetal blood flow, i.e. fetal breathing movements and fetal cardiac arrhythmia. Ultrasound Med Biol. 1984;10:339–48.

    Article  Google Scholar 

  70. Erskine RLA, Ritchie JWK. Quantitative measurement of fetal blood flow using Doppler ultrasound. Br J Obstet Gynaecol. 1985;92:600–4.

    Article  CAS  Google Scholar 

  71. Rasmussen K. Quantitative blood flow in the fetal descending aorta in the umbilical vein in normal pregnancies. Scand J Clin Lab Invest. 1987;47:319–24.

    Article  CAS  Google Scholar 

  72. Räsänen J, Kirkinen P, Jouppila P. Fetal aortic blood flow and echocardiographic findings in human pregnancy. Eur J Obstet Gynecol Reprod Biol. 1988;27:115–24.

    Article  Google Scholar 

  73. Cameron A, Nicholson S, Nimrod C, et al. Duplex ultrasonography of the fetal aorta, umbilical artery, and placental arcuate artery throughout normal human pregnancy. J Can Assoc Radiol. 1989;40:145–9.

    CAS  Google Scholar 

  74. Eldridge ME, Berman W Jr, Greene ER. Serial echo-Doppler measurements of human fetal abdominal aortic blood flow. J Ultrasound Med. 1985;4:453–8.

    Article  CAS  Google Scholar 

  75. Griffin D, Bilardo K, Masini L, et al. Doppler blood flow waveforms in the descending thoracic aorta of the human fetus. Br J Obstet Gynaecol. 1984;91:997–1006.

    Article  CAS  Google Scholar 

  76. Van Eyck J, Wladimiroff JW, Noordam MJ, Tonge HM, Prechtl HFR. The blood velocity waveform in the fetal descending aorta: its relationship to fetal behavioural states in normal pregnancy at 37–38 weeks. Early Hum Dev. 1985;12:137–43.

    Article  Google Scholar 

  77. Jouppila P, Kirkinen P. Blood velocity waveforms of the fetal aorta in normal and hypertensive pregnancies. Obstet Gynecol. 1986;67:856–60.

    Article  CAS  Google Scholar 

  78. Tonge HM, Wladimiroff JW, Noordam MJ, van Kooten C. Blood flow velocity waveforms in the descending fetal aorta: comparison between normal and growth-retarded pregnancies. Obstet Gynecol. 1986;67:851–5.

    Article  CAS  Google Scholar 

  79. Arabin B, Bergmann PL, Saling E. Qualitative Analyse von Blutflußspektren uteroplazentarer Gefäße, der Nabelarterie, der fetalen Aorta and der fetalen Arteria carotis communis in normaler Schwangerschaft. Ultraschall Klin Prax. 1987;2:114–9.

    Google Scholar 

  80. Årström K, Eliasson A, Hareide JH, Maršál K. Fetal blood velocity waveforms in normal pregnancies: a longitudinal study. Acta Obstet Gynecol Scand. 1989;68:171–8.

    Article  Google Scholar 

  81. Hecher K, Spernol R, Szalay S, Stettner H, Ertl U. Referenzwerte für den Pulsatilitätsindex und den Resistance-Index von Blutflußkurven der Arteria umbilicalis und der fetalen Aorta im dritten Trimenon. Ultraschall. 1989;10:226–9.

    Article  CAS  Google Scholar 

  82. Ferrazi E, Gementi P, Bellotti M, et al. Doppler velocimetry; critical analysis of umbilical, cerebral and aortic reference values. Eur J Obstet Gynecol Reprod Biol. 1990;38:189–1.

    Article  Google Scholar 

  83. De Koekkoek-Doll PK, Stijnen T, Wladimiroff JW. Behavioural state dependency of renal artery and descending aorta velocimetry and micturation in the normal term fetus. Br J Obstet Gynaecol. 1994;101:975–8.

    Article  Google Scholar 

  84. Bahlmann F, Wellek S, Reinhardt I, Krummenauer F, Merz E, Welter C. Reference values of fetal aortic flow velocity waveforms and associated intra-observer reliability in normal pregnancies. Ultrasound Obstet Gynecol. 2001;17:42–9.

    Article  CAS  Google Scholar 

  85. Chen HY, Chang FM, Huang HC, Hsieh FJ, Lu CC. Antenatal fetal blood flow in the descending aorta and the umbilical vein and their ratio in normal pregnancy. Ultrasound Med Biol. 1988;14:263–8.

    Article  CAS  Google Scholar 

  86. Longo LD, Wyat JF, Hewitt CW, Gilbert RD. A comparison of circulatory responses to hypoxic and carbon monoxide hypoxia in fetal blood flow and oxygenation. In: Longo LD, Rewean DD, editors. Fetal and newborn cardiovascular physiology. New York: Garland STPM Press; 1978. p. 259.

    Google Scholar 

  87. Gruenwald P. Pathology of the deprived fetus and its supply line. In: Size at birth. Ciba Foundation Symposium 27. Amsterdam: Elsevier, Excerpta Medica; 1974. p. 1–26.

    Google Scholar 

  88. Maršál K, Lingman G, Rosén KG, Kjellmer I. Myocardial contractility and ultrasonically measured blood velocity in fetal lamb. In: Gill RW, Dadd MJ, editors. WFUMB ‘85. Sydney: Pergamon; 1985. p. 256.

    Google Scholar 

  89. Lingman G, Gennser G, Maršál K. Ultrasonic measurements of the blood velocity and pulsatile diameter changes in the fetal descending aorta. In: Rolfe P, editor. Fetal physiological measurements. London: Butterworth; 1986. p. 206–10.

    Chapter  Google Scholar 

  90. Tonge HM, Struijk PC, van Kooten C, Wladimiroff JW, Bom N. The first derivative as a means of synchronizing pulsatile flow velocity and vessel diameter waveforms in the fetal descending aorta. J Perinat Med. 1988;16:299–304.

    Article  CAS  Google Scholar 

  91. Stale H, Gennser G, Maršál K. Blood flow velocity and pulsatile diameter changes in the fetal descending aorta: a longitudinal study. Am J Obstet Gynecol. 1990;163:26–9.

    Article  CAS  Google Scholar 

  92. Van Eyck J, Wladimiroff JW, van den Wijngaard JAGW, Noordam MJ, Prechtl HFR. The blood flow velocity waveform in the fetal internal carotid and umbilical artery; its relation to fetal behavioural states in normal pregnancy at 37–38 weeks. Br J Obstet Gynaecol. 1987;94:736–41.

    Article  Google Scholar 

  93. Van Eyck J, Wladimiroff JW, Noordam MJ, Cheung KL, van den Wijngaard JAGW, Prechtl HFR. The blood flow velocity waveform in the fetal descending aorta; its relationship to fetal heart rate pattern, eye and body movements in normal pregnancy at 27–28 weeks of gestation. Early Hum Dev. 1988;17:187–94.

    Article  Google Scholar 

  94. Maršál K. Fetal breathing movements in man: characteristics and clinical significance. Obstet Gynecol. 1978;52:394–401.

    Google Scholar 

  95. Walz W. Über die Bedeutung der intrauterinen Atembewegungen. Monatsschr Geburtshilfe Gynaekol. 1922;60:715–6.

    Google Scholar 

  96. Lindblad A, Bernow J, Maršál K. Obstetric analgesia and fetal blood flow during labour. Br J Obstet Gynaecol. 1987;94:306–11.

    Article  CAS  Google Scholar 

  97. Lees MH, Hill JD, Ochsner AJ III, Thomas CL, Novy MJ. Maternal placental and myometrial blood flow of the rhesus monkey during uterine contractions. Am J Obstet Gynecol. 1971;110:68–81.

    Article  CAS  Google Scholar 

  98. Fendel H, Fettweis P, Billet P, et al. Dopplerunter-suchungen des arteriellen utero-feto-plazentaren Blut-flusses vor und während der Geburt. Z Geburtshilfe Perinatol. 1987;191:121–9.

    CAS  Google Scholar 

  99. Axt-Fliedner R, Ertan K, Hendrik HJ, Schmidt W. Neonatal nucleated red blood cell counts: relationship to abnormal fetoplacental circulation detected by Doppler studies. J Ultrasound Med. 2001;20:183–90.

    Article  CAS  Google Scholar 

  100. Adamson SL, Langille BL. Factors determining aortic and umbilical blood flow pulsatility in fetal sheep. Ultrasound Med Biol. 1992;18:255–66.

    Article  CAS  Google Scholar 

  101. Gudmundsson S, Eik-Nes SH, Lingman G, et al. Evaluation of blood flow velocity indices in an animal model. Echocardiography. 1990;7:647–56.

    Article  CAS  Google Scholar 

  102. Malcus P, Hökegård K-H, Kjellmer I, et al. The relationship between arterial blood velocity waveforms and acid-base status in the fetal lamb during experimental asphyxia. J Matern Fetal Invest. 1991;1:29–34.

    Google Scholar 

  103. Malcus P, Kjellmer I, Lingman G, et al. Diameters of the common carotid artery and aorta change in different directions during acute asphyxia in the fetal lamb. J Perinat Med. 1991;19:259–67.

    CAS  Google Scholar 

  104. Lingman G, Dahlström JA, Eik-Nes SH, et al. Hemodynamic evaluation of fetal heart arrhythmias. Br J Obstet Gynaecol. 1984;91:647–52.

    Article  CAS  Google Scholar 

  105. Lingman G, Maršál K. Circulatory effects of fetal heart arrhythmias. J Pediatr Cardiol. 1986;7:67–74.

    Article  CAS  Google Scholar 

  106. Chan FY, Woo SK, Ghosh A, Tang M, Lam C. Prenatal diagnosis of congenital fetal arrhythmias by simultaneous pulsed Doppler velocimetry of the fetal abdominal aorta and inferior vena cava. Obstet Gynecol. 1990;76:200–4.

    CAS  Google Scholar 

  107. Tonge HM, Wladimiroff JW, Noordam MJ, Stewart PA. Fetal cardiac arrhythmias and their effect on volume blood flow in descending aorta of human fetus. J Clin Ultrasound. 1986;14:607–12.

    Article  CAS  Google Scholar 

  108. Maršál K, Eik-Nes SH, Persson P-H, Ulstein M. Blood flow in human fetal aorta in normal pregnancy and in fetal cardiac arrhythmia. Acta Obstet Gynecol Scand Suppl. 1980;93:39.

    Google Scholar 

  109. Lingman G, Lundström N-R, Maršál K. Clinical outcome and circulatory effects of fetal cardiac arrhythmia. Acta Paediatr Scand Suppl. 1986;329:120–6.

    Article  CAS  Google Scholar 

  110. Kirkinen P, Jouppila P. Umbilical venous flow as indicator of fetal anaemia. Lancet. 1981;1:1004–5.

    Article  CAS  Google Scholar 

  111. Rightmire DA, Nicolaides KH, Rodeck CH, Campbell S. Fetal blood velocities in Rh isoimmunization: relationship to gestational age and to fetal hematocrit. Obstet Gynecol. 1986;68:233–6.

    CAS  Google Scholar 

  112. Nicolaides KH, Bilardo CM, Campbell S. Prediction of fetal anemia by measurement of the mean blood velocity in the fetal aorta. Am J Obstet Gynecol. 1990;162:209–12.

    Article  CAS  Google Scholar 

  113. Vetter K. Dopplersonographie in der Schwangerschaft. Weinheim: VCH Verlagsgesellschaft; 1991. p. 142.

    Google Scholar 

  114. Copel JA, Grannum PA, Green JJ, et al. Fetal cardiac output in the isoimmunized pregnancy: a pulsed Doppler-echocardiographic study of patients undergoing intravascular intrauterine transfusion. Am J Obstet Gynecol. 1989;161:361–5.

    Article  CAS  Google Scholar 

  115. Rizzo G, Nicolaides KH, Arduini D, Campbell S. Effects of intravascular fetal blood transfusion on fetal intracardiac Doppler velocity waveforms. Am J Obstet Gynecol. 1990;163:1231–8.

    Article  CAS  Google Scholar 

  116. Bilardo CM, Nicolaides KH, Campbell S. Doppler studies in red cell isoimmunization. Clin Obstet Gynecol. 1989;32:719–27.

    Article  CAS  Google Scholar 

  117. Mari G, Deter RL, Carpenter RL, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the blood velocity in anemic fetuses. N Engl J Med. 2000;342:9–14.

    Article  CAS  Google Scholar 

  118. Kumari S, Deka D, Dadhwal V, Perumal V. Correlation of fetal blood vessel Doppler measurements with fetal anemia among rhesus isoimmunized pregnancies after two intrauterine transfusions. Int J Gynaecol Obstet. 2019;146:218–22.

    Article  Google Scholar 

  119. Olofsson P, Lingman G, Sjöberg N-O, Maršál K. Ultrasonic measurement of fetal blood flow in diabetic pregnancy. J Perinat Med. 1987;15:545–53.

    Article  CAS  Google Scholar 

  120. Fadda GM, D’Antona D, Ambrosini G, et al. Placenta and fetal pulsatility indices in gestational diabetes mellitus. J Reprod Med. 2001;46:365–70.

    CAS  Google Scholar 

  121. Erskine RLA, Ritchie JWK. Umbilical artery blood flow characteristics in normal and growth-retarded fetuses. Br J Obstet Gynaecol. 1985;92:605–10.

    Article  CAS  Google Scholar 

  122. Laurini R, Laurin J, Maršál K. Placental histology and fetal blood flow in intrauterine growth retardation. Acta Obstet Gynecol Scand. 1994;73:529–34.

    Article  CAS  Google Scholar 

  123. Gardiner H, Brodszki J, Eriksson A, Maršál K. Volume blood flow estimation in the normal and growth-restricted fetus. Ultrasound Med Biol. 2002;28:1107–13.

    Article  Google Scholar 

  124. Visentin S, Londero AP, Calanducci M, et al. Fetal abdominal aorta: Doppler and structural evaluation of endothelial function in intrauterine growth restriction and controls. Ultraschall Med. 2019;40:55–63.

    Article  Google Scholar 

  125. Soothill PW, Nicolaides KH, Bilardo CM, Campbell S. Relation of fetal hypoxia in growth retardation to mean blood velocity in the fetal aorta. Lancet. 1986;2:1118–20.

    Article  CAS  Google Scholar 

  126. Bilardo CM, Nicolaides KH, Campbell S. The relationship of fetal blood gases and pH to Doppler investigations of the fetal circulation. In: Maršál K, editor. Abstracts, third international conference on fetal and neonatal physiologic measurements. Malmö/Ronnby: Malmö General Hospital, Malmö; 1988. p. 106.

    Google Scholar 

  127. Arabin B, Siebert M, Jimenez E, Saling E. Obstetrical characteristics of a loss of end-diastolic velocities in the fetal aorta and/or umbilical artery using Doppler ultrasound. Gynecol Obstet Investig. 1988;25:173–80.

    Article  CAS  Google Scholar 

  128. Chaoui R, Hoffmann H, Zienert A, et al. Klinische Bedeutung und fetal outcome beim enddiastolischen Flowverlust in der A. umbilicalis und/oder fetalen Aorta: Analyse von 51 Fällen. Geburtshilfe Frauenheilkd. 1991;51:532–9.

    Article  CAS  Google Scholar 

  129. Hackett GA, Campbell S, Gamsu H, Cohen-Overbeek T, Pierce JMF. Doppler studies in the growth retarded fetus and prediction of neonatal necrotising enterocolitis, haemorrhage, and neonatal morbidity. BMJ. 1987;294:13–6.

    Article  CAS  Google Scholar 

  130. Eronen M, Kari A, Pesonen E, et al. Value of absent or retrograde end-diastolic flow in fetal aorta and umbilical artery as a predictor of perinatal outcome in pregnancy-induced hypertension. Acta Paediatr. 1993;82:919–24.

    Article  CAS  Google Scholar 

  131. Illyes M, Gati I. Reverse flow in the human fetal descending aorta as a sign of severe fetal asphyxia preceding intrauterine death. J Clin Ultrasound. 1988;16:403–10.

    Article  CAS  Google Scholar 

  132. Arabin B. Doppler blood flow measurement in uteroplacental and fetal vessels: pathophysiological and clinical significance. Berlin Heidelberg New York: Springer; 1990. p. 85.

    Book  Google Scholar 

  133. Laurin J, Maršál K, Persson P-H, Lingman G. Ultrasound measurement of fetal blood flow in predicting fetal outcome. Br J Obstet Gynaecol. 1987;94:940–8.

    Article  CAS  Google Scholar 

  134. Maršál K, Persson P-H. Ultrasonic measurement of fetal blood velocity waveform as a secondary diagnostic test in screening for intrauterine growth retardation. J Clin Ultrasound. 1988;16:239–44.

    Article  Google Scholar 

  135. Harrington K, Thompson MO, Carpenter RG, Nguyen M, Campbell S. Doppler fetal circulation in pregnancies complicated by pre-eclampsia or delivery of a small for gestational age baby: 2. Longitudinal analysis. Br J Obstet Gynaecol. 1999;106:453–66.

    Article  CAS  Google Scholar 

  136. Hecher K, Bilardo CM, Stigter RH, et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol. 2001;18:564–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Maršál .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maršál, K., Hernandez-Andrade, E. (2023). Fetal Aortic Isthmus and Descending Aorta. In: Maulik, D., Lees, C.C. (eds) Doppler Ultrasound in Obstetrics and Gynecology. Springer, Cham. https://doi.org/10.1007/978-3-031-06189-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06189-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06188-2

  • Online ISBN: 978-3-031-06189-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics