Skip to main content

Energy Conversion: How Life Makes a Living

  • Chapter
  • First Online:
Energy and Evolutionary Conflict
  • 151 Accesses

Abstract

While general ideas about metabolism and respiration were part of scientific thinking for centuries, until relatively recently, no hypothesis could provide a mechanistic explanation for the central process of energy conversion. Respiration and the oxidation of carbon compounds were clearly linked to the synthesis of ATP, but a direct connection remained elusive. In the early 1960s, three competing hypotheses attempted to explain this mechanism: (1) chemical coupling, (2) conformational coupling, and (3) chemiosmosis. In broad outline, hypothesis (3) was ultimately supported, although not without incorporating some aspects of (2). Meanwhile, with the discovery of quantum electron transfer and later supercomplex formation, chemiosmotic electron transfer was shown to proceed extraordinarily rapidly, much faster than soluble chemical reactions. Under favorable conditions, chemiosmosis thus rapidly forms products, and if these products accumulate to the extent that they inhibit electron flow, electrons may divert to molecular oxygen, forming reactive oxygen species (i.e., partially reduced forms of oxygen). While such reactive oxygen species have numerous signaling functions, in large quantities, they pose risks of cellular and organismal damage. By separating hydrogen atoms into protons and electrons, the chemiosmotic process itself is prone to forming dangerous by-products. This has important implications regarding the “management” of chemiosmosis and its products.

In broadest terms, chemiosmosis is the movement of protons over a membrane (hence the resemblance in name to osmosis, the movement of water over a membrane). In respiration, what happens is this. Electrons are stripped from food and passed along a chain of carriers to oxygen. The energy released at several points is used to pump protons across a membrane. The outcome is a proton gradient over the membrane. The membrane acts a bit like a hydroelectric dam. Just as water flowing down from a hilltop reservoir drives a turbine to generate electricity, so in cells the flow of protons through protein turbines in the membrane drives the synthesis of ATP. This mechanism was totally unexpected: instead of having a nice straightforward reaction between two molecules, a strange gradient of protons is interpolated in the middle.

Nick Lane [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lane N (2009) Life ascending: the ten great inventions of evolution. Oxford University Press, Oxford

    Google Scholar 

  2. Walker G (2006) The tipping point of the iceberg. Nature 441:802–805

    Article  CAS  PubMed  Google Scholar 

  3. Harold FM (1986) The vital force: a study of bioenergetics. WH Freeman, New York

    Google Scholar 

  4. Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science 283:1488–1493

    Article  CAS  PubMed  Google Scholar 

  5. Scheffler IE (1999) Mitochondria. John Wiley, New York

    Book  Google Scholar 

  6. Lane N (2005) Power, sex, suicide: mitochondria and the meaning of life. Oxford University Press, Oxford

    Google Scholar 

  7. Scheffler IE (2008) Mitochondria, 2nd edn. John Wiley, New York

    Google Scholar 

  8. Weber BH (1991) Glynn and the conceptual development of the chemiosmotic theory: a retrospective and prospective view. Biosci Rep 11:577–617

    Article  CAS  PubMed  Google Scholar 

  9. Williams RJP (1993) The history of proton-driven ATP formation. Biosci Rep 13:191–212

    Article  CAS  PubMed  Google Scholar 

  10. Malmström BG (2000) Mitchell saw the vista, if not the details. Nature 403:356

    Article  PubMed  Google Scholar 

  11. Harold FM (2001) Gleanings of a chemiosmotic eye. BioEssays 23:848–855

    Article  CAS  PubMed  Google Scholar 

  12. Crofts AR (2004) The Q-cycle—a personal perspective. Photosynth Res 80:223–243

    Article  CAS  PubMed  Google Scholar 

  13. Carafoli E (2003) Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem Sci 28:175–181

    Article  CAS  PubMed  Google Scholar 

  14. Elliot WH, Elliot DC (1997) Biochemistry and molecular biology. Oxford University Press, Oxford

    Google Scholar 

  15. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  16. Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC (1977) Oxidative phosphorylation and photophosphorylation. Annu Rev Biochem 46:955–1026

    Article  CAS  PubMed  Google Scholar 

  17. Kadenbach B (2003) Instrisic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604:77–94

    Article  CAS  PubMed  Google Scholar 

  18. Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1–11

    Article  CAS  PubMed  Google Scholar 

  19. Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  CAS  PubMed  Google Scholar 

  20. Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    Article  CAS  PubMed  Google Scholar 

  21. Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    Article  CAS  PubMed  Google Scholar 

  22. Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388

    Article  CAS  PubMed  Google Scholar 

  23. Blackstone NW (2003) Redox signaling in the growth and development of colonial hydroids. J Exp Biol 206:651–658

    Article  CAS  PubMed  Google Scholar 

  24. Osyczka A, Moser CC, Daldal F, Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427:607–612

    Article  CAS  PubMed  Google Scholar 

  25. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 9:651–658

    Article  CAS  PubMed  Google Scholar 

  26. Chance B, Nishimura M (1960) On the mechanism of chlorophyll-cytochrome interaction: the temperature insensitivity of light-induced cytochrome oxidation in chromatium. Proc Natl Acad Sci U S A 46:19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802

    Article  CAS  PubMed  Google Scholar 

  28. Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun H-P (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci U S A 102:3225–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilson TH, Lin ECC (1980) Evolution of membrane bioenergetics. J Supramol Struct 13:421–446

    Article  CAS  PubMed  Google Scholar 

  30. Gest H (1980) The evolution of biological energy-transducing systems. FEMS Microbiol Lett 7:73–77

    Article  CAS  Google Scholar 

  31. de Duve C (1995) Vital dust. Basic Books, New York

    Google Scholar 

  32. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32:271–280

    Article  CAS  PubMed  Google Scholar 

  33. Allen JF (2010) Redox homeostasis in the emergence of life. On the constant internal environment of nascent living cells. J Cosmol 10:3362–3373

    Google Scholar 

  34. Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S (2010) Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-010-0920-5

  35. Blackstone NW (2020) Chemiosmosis, evolutionary conflict, and eukaryotic Symbiosis. In: Kloc M (ed) Symbiosis: cellular, molecular, medical, and evolutionary aspects. Springer, Cham, pp 237–252

    Chapter  Google Scholar 

  36. Pearce LL, Bominaar EL, Hill BC, Peterson J (2003) Reversal of cyanide inhibition of cytochrome c oxidase by the auxiliary substrate nitric oxide. J Biol Chem 278:52139–52145

    Article  CAS  PubMed  Google Scholar 

  37. Allen JF (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631

    Article  CAS  PubMed  Google Scholar 

  38. Georgellis D, Kwon O, Lin ECC (2001) Quinones as the redox signal for the arc two-component system of bacteria. Science 292:2314–2316

    Article  CAS  PubMed  Google Scholar 

  39. Armstrong JS, Whiteman M, Yang H, Jones DP (2004) The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat. BioEssays 26:895–900

    Article  CAS  Google Scholar 

  40. Salmeen A, Andersen JN, Meyers MP, Meng T-C, Hinks JA, Tonks NK, Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a suphenyl-amide intermediate. Nature 423:769–773

    Article  CAS  PubMed  Google Scholar 

  41. van Montfort RLM, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423:773–777

    Article  PubMed  CAS  Google Scholar 

  42. Filomeni G, Rotilio G, Ciriolo MR (2005) Disulfide relays and phosphorylation cascades: partners in redox-mediated signaling pathways. Cell Death Differ 12:1555–1563

    Article  CAS  PubMed  Google Scholar 

  43. Coloff JL, Rathmell JC (2006) Metabolic regulation of Akt: roles reversed. J Cell Biol 175:945–947

    Article  CAS  Google Scholar 

  44. Kondoh H, Lleonart ME, Bernard D, Gil J (2007) Protection from oxidative stress by enhanced glycolysis: a possible mechanism of cellular immortalization. Histol Histopathol 22:85–90

    CAS  PubMed  Google Scholar 

  45. Ladurner AG (2006) Rheostat control of gene expression by metabolites. Mol Cell 24:1–11

    Article  CAS  PubMed  Google Scholar 

  46. Coffman JA, Davidson EH (2001) Oral-aboral axis specification in the sea urchin embryo. Dev Biol 230:18–28

    Article  CAS  PubMed  Google Scholar 

  47. Coffman JA, McCarthy JJ, Dickey-Sims C, Robertson AJ (2004) Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus. Dev Biol 273:160–171

    Article  CAS  PubMed  Google Scholar 

  48. Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN (2007) High-throughput identification of catalytic redox-active cysteine residues. Science 315:387–389

    Article  CAS  PubMed  Google Scholar 

  49. Gilbert DL (2000) Fifty years of radical ideas. In: Chiueh CC (ed) Reactive oxygen species: from radiation to molecular biology, Annals of the New York Academy of Sciences, vol 899. New York Academy of Sciences, New York, pp 1–14

    Google Scholar 

  50. Finkel T (2001) Reactive oxygen species and signal transduction. IUBMB Life 52:3–6

    Article  CAS  PubMed  Google Scholar 

  51. Georgiou G, Masip L (2003) An overoxidation journey with a return ticket. Science 300:592–594

    Article  CAS  PubMed  Google Scholar 

  52. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    Article  CAS  PubMed  Google Scholar 

  53. Jönsson TJ, Johnson LC, Lowther WT (2008) Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 451:98–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chan TA, Chu CA, Rauen KA, Kroiher M, Tatarewicz SM, Steele RE (1994) Identification of a gene encoding a novel protein-tyrosine kinase containing SH2 domains and ankyrin-like repeats. Oncogene 9:1253–1259

    CAS  PubMed  Google Scholar 

  55. Blackstone NW, Cherry KS, Van Winkle DH (2004) The role of polyp-stolon junctions in the redox signaling of colonial hydroids. Hydrobiologia 530(531):291–298

    Article  Google Scholar 

  56. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–819

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blackstone, N.W. (2022). Energy Conversion: How Life Makes a Living. In: Energy and Evolutionary Conflict. Springer, Cham. https://doi.org/10.1007/978-3-031-06059-5_2

Download citation

Publish with us

Policies and ethics