Skip to main content
Log in

Glynn and the conceptual development of the chemiosmotic theory: A retrospective and prospective view

  • Special Lecture
  • Published:
Bioscience Reports

Abstract

The origin and evolution of the chemiosmotic theory is described particularly in relation to Peter Mitchell's application of it to model oxidative phosphorylation. Much of the deployment, development and evaluation of the theory occurred at the independent laboratory of the Glynn Research Foundation; the value and future of such an institution is discussed. The role of models mediating between theories and phenomena is analyzed with regard to the growth of knowledge of chemiosmotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandre, A., Reynafarje, B. and Lehninger, A. L. (1978) Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria.Proc. Natl. Acad. Sci. USA 75:5296–5300.

    Google Scholar 

  • Allchin, D. (1991).Resolving Disagreement in Science: The Oxphos Controversy, 1961–1977. Ph.D. Dissertation, University of Chicago.

  • Alvarado, F. and van Os, C. H. (1986)Ion Gradient-Coupled Transport, Elsevier, Amsterdam.

    Google Scholar 

  • Basalla, G. (1988)The Evolution of Technology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bogen, J. and Woodward, J. (1988) Saving the phenomena.Phil. Rev. 97:303–352.

    Google Scholar 

  • Bowyer, J. R. and Trumpower, B. L. (1981) Pathways of electron transfer in the cytochromeb-c 1 complexes of mitochondria and photosynthetic bacteria. In:Chemiosmotic Proton Circuits in Biological Membranes (Skulachev, V. P. and Hinkle, P. C. Eds.) Addison-Wesley, Reading, Mass, pp. 105–122.

    Google Scholar 

  • Boyer, P. D. (1965) Carboxyl activation as a possible common reaction in substrate-level and oxidation phosphorylation and in muscle contraction. In:Oxidases and Related Redox Systems vol. 2 (King, P. D., Mason, H. S. and Morrison, M., Eds.) Wiley, New York, pp. 994–1017.

    Google Scholar 

  • Boyer, P. D. (1974) Conformational coupling in biological energy transductions. In:Dynamics of Energy-Transducing Membranes. (Ernster, L., Estabrook, R. W., and Slater, E. C., Eds.), Elsevier, Amsterdam, pp. 289–301.

    Google Scholar 

  • Boyer, P. D. (1975) A model for conformational coupling of membrane and proton translocation to ATP synthesis and to active transport.FEBS Lett.58:1–6.

    Google Scholar 

  • Boyer, P. D. (1987) The unusual enzymology of ATP synthase.Biochem. 26:8503–8507.

    Google Scholar 

  • Brand, M. D., Lehninger, A. L. and Reynafarje, B. (1977) The stoichiometric coupling of H+ efflux during electron transport to H+ influx during ATP synthesis by mitochondria. In:Biochemistry of Membrane Transport, andFEBS Symp,42, (Semenza, G. and Carafoli, E., Eds.), Springer-Verlag, Berlin, pp. 520–534.

    Google Scholar 

  • Brand, M. D., Reynafarje, B. and Lehninger, A. L. (1976) Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.Proc. Natl. Acad. Sci. USA 73:437–441.

    Google Scholar 

  • Brewster, D. (1831)The Life of Sir Isaac Newton, John Murray, London.

    Google Scholar 

  • Burnet, J. (1945)Early Greek Philosophy. Reprint of Fourth Edition, Adam and Charles Black, London.

    Google Scholar 

  • Cartwright, N. (1983)How the Laws of Physics Lie, Oxford University Press, Oxford.

    Google Scholar 

  • Chappel, J. B. and Crofts, A. R. (1965) Gramicidin and ion transport in isolated liver mitochondria.Biochem. J. 95:393–402.

    Google Scholar 

  • Chappell, J. B. and Crofts, A. R. (1966) Ion transport and reversible volume changes of isolated mitochondria. In:Regulation of Metabolic Processes in Mitochondria (BBA Libra 7), (Tager, J. M., Papa, S., Quagliariello, E. and Slater, E. C., Eds.), Elsevier, Amsterdam, pp. 293–316.

    Google Scholar 

  • Crane, R. K. (1983) The road to ion-coupled membrane processes. In:Comprehensive Biochemistry Vol. 35: Selected Topics in the History of Biochemistry, Personal Recollections I. (Neuberger, A., van Deenen, L. L. M. and Semenga, G., Eds.), Elsevier, Amsterdam, pp. 43–69

    Google Scholar 

  • Crane, R. K., Miller, D. and Bihler, I. (1961) The restrictions on possible mechanisms of intestinal transport of sugars. In:Membrane Transport and Metabolism. (Kleinzeller, A. and Kotyk, A., Eds.), Academic Press, London, pp. 439–449.

    Google Scholar 

  • Crofts, A. R. (1979) Peter Mitchell and the chemiosmotic hypothesis.Biochem. Soc. Bull. 1:4–7.

    Google Scholar 

  • Crofts, A. R., Meinhardt, S. W. and Bowyer, J. R. (1982) The electron-transport chain of Rhodopseudomonas sphaeroides. In:Functions of Quinones in Energy Conserving systems. (Trumpower, B. L., Ed.), Academic Press, New York, pp. 477–498.

    Google Scholar 

  • Danielli, J. F. (1954) Morphological and molecular aspects of active transport.Symp. Soc. Exp. Biol. 8:502–516.

    Google Scholar 

  • Darden, L. and Maull, N. (1977) Interfield theories.Phil. Sci. 44:43–64.

    Google Scholar 

  • Davies, R. E. and Krebs, H. A. (1952) Biochemical aspects of the transport of ions by nerve tissue.Biochem. Soc. Symp. 8:77–92.

    Google Scholar 

  • Davies, R. E. and Ogston, A. G. (1950) On the mechanism of secretion of ions by gastric mucosa and by other tissues.Biochem. J. 46:324–333.

    Google Scholar 

  • Deamer, D. W. (1969) ATP synthesis: the current controversy.J. Chem. Ed. 46:198–206.

    Google Scholar 

  • Depew, D. J. and Weber, B. H. (1985) Innovation and tradition in evolutionary theory. In:Evolution at a Crossroads: The New Biology and the New Philosophy of Science, Bradford Book, MIT Press, Cambridge MA, pp. 227–260.

    Google Scholar 

  • Ernster, L. and Lee, C. P. (1964) Biological oxidations.Ann. Rev. Biochem. 33:729–788.

    Google Scholar 

  • Friedkin, M. and Lehninger, A. L. (1949) Esterification of inorganic phosphate coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen.J. Biol. Chem. 178:611–623.

    Google Scholar 

  • Gilbert, G. N. and Mulkay, M. (1984a) Experiments are the key: Participants' histories and historians' histories of science.Isis 75:105–125.

    Google Scholar 

  • Gilbert, G. N. and Mulkay, M. (1984b).Opening Pandora's Box: A Sociological Analysis of Scientist's Discourse. Cambridge University Press, Cambridge.

    Google Scholar 

  • Glasstone, S., Laidler, K. J. and Eyring, H. (1941)The Theory of Rate Processes. McGraw Hill, New York.

    Google Scholar 

  • Greville, G. D. (1969) A scrutiny of Mitchell's chemiosmotic hypothesis of respiratory and phosynthetic phosphorylationCurr. Top. Bioenerg. 3:1–78.

    Google Scholar 

  • Guggenheim, E. A. (1933)Modern Thermodynamics by the Methods of Willard Gibbs. Methuen, London.

    Google Scholar 

  • Hacking, I. (1983)Representing and Intervening: Introductory Topics in the Philosophy of Natural Science. Cambridge University Press, Cambridge.

    Google Scholar 

  • Harold, F. M. (1972) Conservation and transformation of energy by bacterial membranes.Bact. Rev. 36:172–230.

    Google Scholar 

  • Harold, F. M. (1986)The Vital Force: A Study of bioenergetics. W. H. Freeman, New York.

    Google Scholar 

  • Hershell, J. (1830)Preliminary discourse on the Study of Natural Philosophy. Longman, Rees, Orme, Brown and Green, London.

    Google Scholar 

  • Hinkle, P. C. (1981) Coupling ratios of proton transport by mitochondria. In:Chemiosmotic Proton Circuits in Biological Membranes. (Skulachev, V. P. and Hinkle, P. C. Eds.), Addison-Wesley, Reading, pp. 49–58.

    Google Scholar 

  • Hinkle, P. C. and McCarty, R. E. (1978) How cells make ATP.Scientific American 238, (3):104–123.

    Google Scholar 

  • Hinkle, P. and Mitchell, P. (1970) Effect of membrane potential on equilibrium poise between cytochrome a and cytochrome c in rat liver mitochondria.Bioenergetics 1:45–60.

    Google Scholar 

  • Hind, G. and Jagendorf, A. T. (1963) Separation of light and dark stages in photophosphorylation.Proc. Nat. Acad. Sci. USA 49:715–722.

    Google Scholar 

  • Hofmann, J. R. (1990) How the models of chemistry vie.PSA 1990 Vol.1:405–419.

    Google Scholar 

  • Holton, G. (1988)Thematic Origins of Scientific Thought, Revised Edition. Harvard University Press, Cambridge MA.

    Google Scholar 

  • Hoyningen-Huene, P. (1987) Context of discovery and justification.Stud. Hist. Phil. Sci. 18:501–516.

    Google Scholar 

  • Huijing, F. and Slater, E. C. (1961) The use of oligomycin as inhibitor of oxidative phosphorylation.J. Biochem. 49:493–501.

    Google Scholar 

  • Huszagh, V. A. and Infante, J. P. (1989) The hypothetical way of progress.Nature 338:109.

    Google Scholar 

  • Jagendorf, A. T. and Hind, G. (1963) Studies on the mechanism of photophosphorylation. In:Photosynthesis Mechanisms in Green Plants. Kok, B. and Jagendorf, A. T. Nat. Acad. Sci. Nat. Res. Council Publ. no. 1145, Washington, D. C., pp. 599–610.

  • Jagendorf, A. T. and Uribe, E. (1966) ATP formation caused by acid-bath transition of spinach chloroplasts.Proc. Nat. Acad. Sci. USA 55:170–177.

    Google Scholar 

  • Kayalar, C., Rosing, S. and Boyer, P. D. (1977) An alternating site sequences for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction mechanisms.J. Biol. Chem. 252:2486–2491.

    Google Scholar 

  • Kell, D. B. (1979) On the functional proton current pathway of electron transport phosphorylation.Biochem. Biophys. Acta 549:55–99.

    Google Scholar 

  • Kelly, K. T. (1987) The logic of discovery.Phil. Sci. 54:435–452.

    Google Scholar 

  • Kleiner, S. A. (1988) The logic of discovery and Darwin's pre-Malthusian researches.Biol. and Phil. 3:293–315.

    Google Scholar 

  • Lakatos, I. (1970) Falsification and the methodology of scientific research programmes. In:Criticism and the Growth of Knowledge. (Lakatos, I. and Musgrave, A., Eds.), Cambridge University Press, Cambridge, pp. 91–195.

    Google Scholar 

  • Laudan, L. (1977)Progress and its Problems: Towards a Theory of Scientific Growth. University of California Press, Berkeley.

    Google Scholar 

  • Lardy, H. A., Connelly, J. L. and Johnson, D. (1964) Antibiotics as tools for metabolic studies II: inhibitions of phosphoryl transfer in mitochondria by oligomycin and aurovertin.Biochem. 3:1961–1968.

    Google Scholar 

  • Lardy, H. A., Johnson, D. and McMurray, W. C. (1958) Antibiotics as tools for metabolic studies I: a survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems.Arch. Biochem. Biophys. 78:587–597.

    Google Scholar 

  • Lee, C. P. and Ernster, L. (1966) The energy-linked nicotinamide nucleotide transhydrogenous reaction: its characteristics and its use as a tool for the study of oxidative phosphorylation. Regulation of Metabolic Processes in Mitochondria. (Quagliariello, E., Slater, E. C., Papa, S. and Tager, J. M., Eds),BBA Libr. 7:218–236.

    Google Scholar 

  • Lehninger, A. L. (1954) Oxidative phosphorylation.Harvey Lectures 49:176–215.

    Google Scholar 

  • Lehninger, A. L. (1962) Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation.Physiol. Rev. 42:467–517.

    Google Scholar 

  • Lehninger, A. L. and Wadkins, C. L. (1962) Oxidative phosphorylation.Ann. Rev. Biochem. 31:47–78.

    Google Scholar 

  • Lipmann, F. (1941) Metabolic generation and utilization of phosphate bond energy.Adv. Enzymol. 1:99–162.

    Google Scholar 

  • Lipmann, F. (1946) Metabolic process patterns. In:Currents in Biochemical Research. (Green, D. E., Ed.), Interscience, New York, reprinted in F. Lipmann Wanderings of a Biochemist, Wiley-Interscience, New York, pp. 128–139.

    Google Scholar 

  • Lundegardh, H. (1940) Investigations as to the absorption and accumulation of inorganic ions.Annals of the Agricultural College of Sweden.8:234–404.

    Google Scholar 

  • Lundegardh, H. (1954) Anion respiration: the experimental basis of a theory of absorption, transport and exudation of electrolytes by living cells and tissues.Symp. Soc. Exp. Biol. 8:262–296.

    Google Scholar 

  • MacIntyre, A. (1980) Epistemological crises, dramatic narrative, and the philosophy of sciences. In:Paradigms and Revolutions (Gutting, G. Ed.), University of Notre Dame Press, Notre Dame, Indiana, pp. 54–74.

    Google Scholar 

  • Mathews, C. K. and van Holde, K. E. (1990)Biochemistry, Benjamin/Cummings, Redwood City.

    Google Scholar 

  • Mitchell, P. (1949) The osmotic barrier in bacteria. In:The Nature of the Bacterial Surface. (Miles, A. A. and Pirie, N. W., Eds.), Blackwell, Oxford, pp. 55–75.

    Google Scholar 

  • Mitchell, P. (1953) Transport of phosphate across the surface of Micrococcus pyogenes: nature of the cell ‘inorganic phosphate’.J. Gen. Microbiol. 9:237–287.

    Google Scholar 

  • Mitchell, P. (1954a) Transport of phosphate across the osmotic barrier of Micrococcus pyogenes: specificity and kinetics.J. Gen. Microbiol. 11:73–82.

    Google Scholar 

  • Mitchell, P. (1954b) Transport of phosphate through an osmotic barrier.Symp. Soc. Exp. Biol. 8:254–261.

    Google Scholar 

  • Mitchell, P. (1956) Discussion contribution.Faraday Soc. Disc. 21, 278–279.

    Google Scholar 

  • Mitchell, P. (1957) A general theory of membrane transport from studies of bacteria.Nature 180:134–136.

    Google Scholar 

  • Mitchell, P. (1959) Structure and function in microorganisms.Biochem. Soc. Symp. 16:73–93.

    Google Scholar 

  • Mitchell, P. (1961a) Biological transport phenomena and the spatially anisotropic characteristics of enzyme systems causing a vector component in metabolism. In:Membrane Transport and Metabolism. (Kleinzeller, A. and Kotyk, A., Eds.), Academic Press, London, pp. 22–34.

    Google Scholar 

  • Mitchell, P. (1961b) Approaches to the analysis of specific membrane transport. In:Biological Structure and Function, Vol. 2, (Goodwin, T. W. and Lindberd, O., Eds.), Academic Press, New York, pp. 581–599.

    Google Scholar 

  • Mitchell, P. (1961c) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biochem. J. 79:23–24.

    Google Scholar 

  • Mitchell, P. (1961d) Conduction of protons through the membranes of mitochondria and bacteria by uncouplers of oxidative phosphorylation.Biochem. J. 81:24.

    Google Scholar 

  • Mitchell, P. (1961e) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature 191:144–148.

    Google Scholar 

  • Mitchell, P. (1962) Metabolism, transport, and morphogenesis: which drives which?J. Gen. Microbiol. 29:25–37.

    Google Scholar 

  • Mitchell, P. (1963) Molecule, group and electron translocation through natural membranes.Biochem. Soc. Symp. 22:141–168.

    Google Scholar 

  • Mitchell, P. (1966a). Metabolic flow in the mitochondrial multiphase system: an appraisal of the chemi-osmotic theory of oxidative phosphorylation. In:Regulation of Metabolic Processes in Mitochondria, (Tager, J. M., Papa, S., Quagliariello, E. and Slater, E. C., Eds.), Elsevier, Amsterdam, pp. 65–85.

    Google Scholar 

  • Mitchell, P. (1966b).chemiosmotic Coupling in Oxidative and Photosynthesis Phosphorylation, Glynn Research, Bodmin, U.K.

    Google Scholar 

  • Mitchell, P. (1966c). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. 41:445–502.

    Google Scholar 

  • Mitchell, P. (1967a). Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells.Fed. Proc. 26:1370–1379.

    Google Scholar 

  • Mitchell, P. (1967b). Active transport and ion accumulation. In:Comprehensive Biochemistry 22, 167–197.

  • Mitchell, P. (1967c). Translocations through natural membranes.Adv. Enzymol. 29:33–87.

    Google Scholar 

  • Mitchell, P. (1968).Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, U.K.

    Google Scholar 

  • Mitchell, P. (1970a). Membranes of cells and organelles: Morphology, transport and metabolism.Symp. Soc. Gen. Microbiol.,20:121–166.

    Google Scholar 

  • Mitchell, P. (1970b). Reversible coupling between transport and chemical reactions. In:Membranes and Ion Transport. Vol. 1. (Bittar, E. E., Ed.), Wiley, New York, pp. 192–256.

    Google Scholar 

  • Mitchell, P. (1972). Structural and functional organisation of energy-transducing membranes and their ion-conducting properties.FEBS Symp. 28:353–370.

    Google Scholar 

  • Mitchell, P. (1975a). Protonmotive function of cytochrome systems. In:Electron Transfer Chains and Oxidative Phosphorylation, (Quagliariello, E., et al., Eds.), North Holland, Amsterdam, pp. 305–316.

    Google Scholar 

  • Mitchell, P. (1975b). Protonmotive redox mechanism of cytochrome b−c complex in the respiratory chain: protonmotive ubiquinone cycle.FEBS Lett. 56:1–6.

    Google Scholar 

  • Mitchell, P. (1975c) The protonmotive Q cycle: a general formulation.FEBS Lett. 59:137–139.

    Google Scholar 

  • Mitchell, P. (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems.J. Theoret. Biol. 62:327–367.

    Google Scholar 

  • Mitchell, P. (1977) Epilogue: from energetic abstraction to biochemical mechanism.Symp. Soc. Gen. Microbiol. 27:383–423.

    Google Scholar 

  • Mitchell, P. (1980) The culture of imagination.J. Roy. Inst. Cornwall New Series 8:173–191.

    Google Scholar 

  • Mitchell, P. (1981a) Bioenergetic aspects of unity in biochemistry; evolution of the concept of ligand conduction in chemical, osmotic, and chemiosmotic reaction mechanisms. In:Of Oxygen Fuels and Living Matter Vol. 1 (Semenza, G. Ed.), Wiley, New York, pp. 1–56.

    Google Scholar 

  • Mitchell, P. (1981b) Biochemical mechanism of proton motivated phosphorylation in F0F1 adenosine triphosphatase molecules. In:Mitochondria and Microsomes (Lee, C. P. et al., Eds.) Addison-Wesley, Reading, Mass., pp. 427–457.

    Google Scholar 

  • Mitchell, P. (1982) An essay on analytic and appreciative communication. In:Cell Function and Differentiation, Part A. (Akoyunoglou et al. Eds.) Alan R. Liss, New York, pp. 1–10.

    Google Scholar 

  • Mitchell, P. (1984) Bacterial flagellar motors and osmoelectric molecular rotation by an axially transmembrane well and turnstile mechanism.FEBS Lett. 176:287–294.

    Google Scholar 

  • Mitchell, P. (1985a) Molecular mechanics of protonmotive F0F1 ATPases: rolling well and turnstile hypotheses.FEBS Lett. 182:1–7.

    Google Scholar 

  • Mitchell, P. (1985b) The correlation of chemical and osmotic forces.J. Biochem. 97:1–18.

    Google Scholar 

  • Mitchell, P. (1987a) A new redox loop formality involving metal-catalysed hydroxide translocation: a hypothetical Cu loop mechanism for cytochrome oxidase.FEBS Lett. 222:235–245.

    Google Scholar 

  • Mitchell, P. (1987b) Realistic models of transport processes. In:Integrational Control of Metabolic Processes: Pure and Applied Aspects, (Kon, O. L. et al., Eds.), ICSU and Cambridge University Press, Cambridge, pp. 231–245.

    Google Scholar 

  • Mitchell, P. (1987c) Respiratory chain systems in theory and practice. In:Advances in Membrane Biochemistry and Bioenergetics (Kim, C. H. et al., Eds.) Plenum, New York and London, pp. 25–52.

    Google Scholar 

  • Mitchell, P. (1988) Possible protonmotive osmochemistry in cytochrome oxidase.Ann. New York Acad. Sci. 550:185–198.

    Google Scholar 

  • Mitchell, P. (1990) Osmochemistry of solute translocation.Res. Microbiol. 141:286–289.

    Google Scholar 

  • Mitchell, P. (1991) Foundations of vectorial metabolism and osmochemistry.Biosci. Rep. 11:297–346.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1956a) Osmotic function and structure in bacteria.Symp. Soc. Gen. Microbiol. 6, 150–180.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1956b) Permeation mechanisms in bacterial membranes.Faraday Soc. Disc. 21, 258–265.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1957) Autolytic release and osmotic properties of ‘protoplasts’ from Staphylococcus aureus.J. Gen. Microbiol. 16:184–194.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1958a) The positic acids of Staphylococcus aureus and other grampositive penicillin-sensitive bacteria: hydrolytic products and possible backbone structure.Proc. Roy. Phys. Soc. Edinburgh 27:79–86.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1958b) Group-translocation: a consequence of enzyme-catalyzed group-transfer.Nature 182:372–373.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1958c) Enzyme catalysis and group-translocation.Proc. Roy. Phys. Soc. Edinburgh 27:61–72.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1959) Permeability of the envelopes of Staphylococcus aureus to some salts, amino acids, and non-electrolytes.J. Gen. Microbiol. 20:434–441.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1965a) Stoichiometry of proton translocation through, the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria.Nature 208:147–151.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1965b), Evidence discriminatory between the chemical and the chemiosmotic mechanisms of electron transport phosphorylation.Nature 208:1205–1206.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1967a) Proton-transport phosphorylation: some experimental tests. In:Biochemistry of Mitochondria, (Slater, E. C., Kaniuga, Z. and Wojtczak, L., Eds.), Academic Press, London, pp. 53–74.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1967b) Chemiosmotic hypothesis of oxidative phosphorylation.Nature 213:137–139.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1967c) Acid-base titration across the membrane system of rat-liver mitochondria.Biochem. J. 104:588–600.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1967d) Respiration-driven proton translocation in rat liver mitochondria.Biochem. J. 105:1147–1162.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1969) Estimation of membrane potential and pH difference across the cristal membrane of rat liver mitochondria.Eur. J. Biochem. 7, 471–484.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1970) The intrinsic anisotropy of the cytochrome oxidase region of the mitochondrial respiratory chain and the consequent vectorial property of respiration. In:Electron Transport and Energy Conservation, (Tager, J. M., Papa, S., Quagliariello, E. and Slater, E. C. Eds.), Adriatica Editrice, Bari, pp. 575–587.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1985) The role of ubiquinone and plastoquinone in chemiosmotic coupling between electron transfer and proton translocation. In:Coenzyme Q, (Lenaz, G., Ed.), Wiley, Chichester, pp. 145–163.

    Google Scholar 

  • Mitchell, P., Moyle, J. and Smith, L. (1968) Bromthymol blue as a pH indicator in Mitochondrial Suspensions.Eur. J. Biochem. 4:9–19.

    Google Scholar 

  • Mitchell, P., Mitchell, R., Moody, A. J., West, I. C., Baum, H. and Wrigglesworth, J. M. (1985) Chemiosmotic coupling in cytochrome oxidase possible protomotive O loop and O cycle mechanisms.FEBS Lett. 188:1–6.

    Google Scholar 

  • Mitchell, R., West, I. C., Moody, A. J. and Mitchell, P. (1986) Measurement of the proton-motive stoichiometry of the respiratory chain of rat liver mitochondrian: the effects of N-ethylmaleimide.Biochem. Biophys. Acta. 849:229–235.

    Google Scholar 

  • Moody, A. J. and Rich, P. R. (1989) The functional catalytic unit involved in proton pumping by rat liver cytochrome-c reductase and by cytochrome-c oxidase.Biochimica et Biophysica Acta 973:29–34.

    Google Scholar 

  • Moody, A. J. and Rich, P. R. (1990) The effect of pH on redox titrations of haem a in cyanide-liganded cytochrome-c oxidase: experimental and modelling studies.Biochimica et Biophysica Acta 1015:201–215.

    Google Scholar 

  • Moss, D. A. and Rich, P. R. (1987) The effect of pre-induction of the b-type cytochromes on the electron transport through the cytochrome bf complex in chloroplasts. In:Progress in Photosynthesis Research Vol. II, (Biggins, J., Ed.), Nijhoff, Dordrecht, pp. 461–464.

    Google Scholar 

  • Moyle, J. and Mitchell, P. (1973). The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria.Biochem. J. 132:571–585.

    Google Scholar 

  • Moyle, J. and Mitchell, P. (1978a) Cytochrome c oxidase is not a proton pump.FEBS Lett. 88:268–272.

    Google Scholar 

  • Moyle, J. and Mitchell, P. (1978b) Measurements of mitochondrial ←H+/O quotients: effects of phosphate and N-ethylaleimide.FEBS Lett. 90:362–365.

    Google Scholar 

  • Mulkay, M. (1985)The Word and the World: Exploration in the Form of Sociological Analysis, Allen and Unwin, London.

    Google Scholar 

  • Neuman, J. S. and Jagendorf, A. T. (1964) Light-induced pH changes related to photophosphorylation by chloroplasts.Arch. Biochem. Biophys. 107:109–119.

    Google Scholar 

  • Ogston, A. G. and Smithies, O. (1948) Some thermodynamic and kinetic aspects of metabolic phosphorylation.Physiol. Rev. 28:283–303.

    Google Scholar 

  • Pagels, H. R. (1988)The Dreams of Reason.: The Computer and the Rise of the Sciences of Complexity, Simon and Schuster, New York.

    Google Scholar 

  • Palmer, G., Tsai, A.-L., Kauten, R., Esposi, M. D. and Lenaz, G. (1985) Transient kinetic studies of complex III: an evaluation of the Q cycle. In:Achievements and Perspectives of Mitochondrial Research, Vol. I: Bioenergetics, (Quagliariello, E., et al., Eds.), Elsevier, Amsterdam, pp. 137–146.

    Google Scholar 

  • Papa, S., Guerrieri, F., Lorusso, M., Izzo, G. and Capuano, F. (1982) The proton translocation function of the ubiquinone-cytochrome c oxidoreductase of mitochondria. In:Function of Quinones in Energy Conserving Systems, (Trumpower, B. L., Ed.), Academic Press, New York, pp. 527–539.

    Google Scholar 

  • Popper, K. R. (1959)The Logic of Scientific Discovery, Hutchinson, London.

    Google Scholar 

  • Popper, K. R. (1962)Conjectures and Refutations: The Growth of Scientific Knowledge, Routledge and Kegan Paul, London.

    Google Scholar 

  • Popper, K. R. (1972)Objective Knowledge: An Evolutionary Approach, Oxford University Press, London.

    Google Scholar 

  • Pressman, B. C. (1965) Induced active transport of ions in mitochondria.Proc. Nat. Acad. Sci. USA 53:1076–1083.

    Google Scholar 

  • Racker, E. (1965)Mechanisms in Bioenergetics, Academic Press, New York.

    Google Scholar 

  • Racker, E. and Krimsky, I. (1952) Mechanism of action of glyceraldehyde-3-phosphate dehydrogenase.Nature 169:1043–1045.

    Google Scholar 

  • Racker, E. and Stoeckenius, W. (1974) Reconstruction of membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662–663.

    Google Scholar 

  • Reid, R. A., Moyle, J. and Mitchell, P. (1966) Synthesis of adenosine triphosphate by a protonmotive force in mitochondria.Nature 212:257–258.

    Google Scholar 

  • Rich, P. R. (1988a) A critical examination of the supposed variable proton stoichiometry of the chloroplast cytochrome bf complex.Biochim. Biophys. Acta 932:33–42.

    Google Scholar 

  • Rich, P. R. (1988b) A strategy for location of the site of proton pumping in cytochrome c oxidase.Ann. New York Acad. Sci. 550:254–259.

    Google Scholar 

  • Rich, P. R. (1991) The osmochemistry of electron-transfer complexes.Biosci. Rep. 11:539–571.

    Google Scholar 

  • Rich, P. R. and Harper, R. (1990) Partition coefficients of quinones and hydroquinones and their relation to biochemical reactivity.FEBS Letts. 269:139–144.

    Google Scholar 

  • Rich, P. R., Heathcote, P. and Moss, D. A. (1987) Electron and proton transfer in the cytochrome bf complex. In:Progress in Photosynethtic Research, Vol. II, (Biggins, J., Ed.), Nijhoff, Dordrecht, pp. 453–460.

    Google Scholar 

  • Rich, P. R., Jeal, A. E., Madgwick, S. A. and Moody J. (1990)Biochimica et Biophysica Acta 1018:29–40.

    Google Scholar 

  • Rich, P. R., Moody, A. J. and Mitchell, R. (1989) The charge translocating reactions of the bc complexes and cytochrome oxidase. In:Charge and Field Effects in Biosystems-2, (Allen, M. J., Cleary, S. F., and Hawkridge, F. M.), Plenum Publishing Corporation, New York, pp. 7–19.

    Google Scholar 

  • Rich, P. R., West, I. C. and Mitchell, P. (1988) The location of CuA in mammalian cytochrome c oxidase.FEBS Lett. 233:25–30.

    Google Scholar 

  • Richards, R. J. (1987)Darwin and the Emergence of Evolution Theories of Mind and Behavior, University of Chicago Press, Chicago.

    Google Scholar 

  • Robinson, J. D. (1984) The chemiosmotic hypothesis of energy transduction and the path of scientific opportunity.Perspectives in Biology and Medicine 27:367–383.

    Google Scholar 

  • Robinson, J. D. (1986) Appreciating key experiments.Brit. J. Hist. Sci. 19:51–56.

    Google Scholar 

  • Rosenberg, A. (1985)The Structure of Biological Science. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rowen, L. S. (1986)Normative epistemology and scientific research: reflections on the “oxphos” controversy, a case history in biochemistry. Ph.D. dissertation, Vanderbilt University.

  • Schaffner, K. (1974) Logic of discovery and justification in regulatory genetics.Stud. Hist. Phil. Sci. 4:349–385.

    Google Scholar 

  • Simon, H. A. (1969)The Sciences of the Artificial. MIT. Press, Cambridge MA.

    Google Scholar 

  • Slater, E. C. (1953) Mechanism of phosphorylation in the respiratory chain.Nature 172:975–978.

    Google Scholar 

  • Slater, E. C. (1966) Oxidative phosphorylation.Compr. Biochem. 14:327–396.

    Google Scholar 

  • Slater, E. C. (1971) The coupling between energy-yielding and energy-utilizing reactions in mitochondria.Quart. Rev. Biophys. 4:35–71.

    Google Scholar 

  • Slater, E. C. (1981) The cytochrome b paradox: the BAL-labile factor and the Q-cycle. In:Chemiosmotic Proton Circuits in Biological Membranes. (Skulachev, V. P. and Hinkle, P., Eds.), Addison-Wesley, Reading, pp. 69–104.

    Google Scholar 

  • Slater, E. C. (1983) The Q cycle, an ubiquitous mechanism of electron transfer.TIBS 8:239–242.

    Google Scholar 

  • Slater, E. C. (1985) Mitochondrial research 1965–1985. In:Achievements and Perspectives of Mitochondrial Research Vol. I. (Quagliariello, E., et al., Eds.), Elsevier, Amsterdam, pp. 11–25.

    Google Scholar 

  • Tager, J. M., Veldsema-Currie, R. D. and Slater, E. C. (1966) Chemiosmotic theory of oxidative phosphorylation.Nature 212:376–379.

    Google Scholar 

  • Ussing, H. H. (1947) Interpretation of the exchange of radio-sodium in isolated muscle.Nature 160:262–263.

    Google Scholar 

  • Weber, B. H. (1986a) The impact of the Prague symposium on the conceptual development of bioenergetics: a retrospective and prospective view. In:Ion Gradient-Coupled Transport. (Alvarado, F. and van Os, C. H., Eds.), Elsevier, Amsterdam, pp. 1–9.

    Google Scholar 

  • Weber, B. H. (1986b) How does biochemistry mean? In:The Languages of Creativity: Models, Problem-Solving, Discourse. (Amsler, M., Ed.), University of Delaware Press, Newark.

    Google Scholar 

  • West, I. C. (1986) A theoretical analysis of the effect of phosphate on the apparent H+/O stoichiometries in oxygen-pulse experiments with rat liver mitochondria.Biochim. Biophys. Acta 849:236–243.

    Google Scholar 

  • West, I. C., Mitchell, R., Moody, A. J. and Mitchell, P. (1986) Proton translocation by cytochrome oxidase in (antimycin+myxothiazol)-treated rat liver mitochondria using ferrocyanide or hexammineruthenium as electron donor.Biochem. J. 236:15–21.

    Google Scholar 

  • Wikström, M. (1977) Proton pump coupled to cytochrome c oxidase in mitochondria.Nature 266:271–273.

    Google Scholar 

  • Wikström, M. and Casey, R. (1985) The oxidation of exogenous cytochrome c by mitochondria.FEBS Lett. 183:293–298.

    Google Scholar 

  • Wikström, M. and Krab, K. (1978) Redox-linked proton pumps in mitochondria. In:Energy Conservation in Biological Membranes. (Schaefer, G., and Klingenberg, M., Eds.), Springer-Verlag, Berlin, pp. 128–139.

    Google Scholar 

  • Wikström, M. and Krab, K. (1979) Proton-pumping cytochrome c oxidase.Biochim. Biophys. Acta 549:177–222.

    Google Scholar 

  • Wikström, M. and Krab, K. 1980) Respiration-linked H+ translocation.Cur. Top. Bioenerg. 10:51–101.

    Google Scholar 

  • Widdas, W. F. (1952) Inability of diffusion to account for placental glucose transfer and consideration of the kinetics of a possible carrier transfer.J. Physiol. 118:23–39.

    Google Scholar 

  • Williams, R. J. P. (1961) Possible functions of chains of catalysts.J. Theor. Biol. 1:1–17.

    Google Scholar 

  • Williams, R. J. P. (1989) Energizing protons in membranes.Nature 338:709–711.

    Google Scholar 

  • Woodward, J. (1989) Data and phenomena.Synthese 79:393–472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, B.H. Glynn and the conceptual development of the chemiosmotic theory: A retrospective and prospective view. Biosci Rep 11, 577–617 (1991). https://doi.org/10.1007/BF01130219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130219

Key Words

Navigation