Skip to main content

Brachiopods at Hydrocarbon Seeps

  • Chapter
  • First Online:
Ancient Hydrocarbon Seeps

Part of the book series: Topics in Geobiology ((TGBI,volume 53))

  • 419 Accesses

Abstract

Although there is no evidence that extant brachiopods are members of chemosynthesis-based communities, many Palaeozoic and Mesozoic seep- or vent-related faunas were dominated by brachiopods. Brachiopods associated with ancient methane seeps are represented by members of four orders: Lingulida, Atrypida, Terebratulida and, most notably, Rhynchonellida. The oldest brachiopod known from chemosynthesis-based associations is the Silurian, vent-related lingulide Pyrodiscus, distinguished by a very large shell. Septatrypa, found in the Upper Silurian and Lower Devonian, is the only atrypide genus associated with chemosynthesis-based communities. The Devonian to Cretaceous members of the rhynchonellide superfamily Dimerelloidea, with the most famous genera Dzieduszyckia and Peregrinella, were apparently specialized to chemosynthesis-dominated environments, in which they formed dense, monospecific clusters. So far, the best-known terebratulide found at seep deposits is Upper Cretaceous Eucalathis. The controls on the relative success of seep-dwelling brachiopods and bivalves remain arguably the most enigmatic aspect of the pre-Cenozoic record of chemosynthesis-based ecosystems. The constraints on the disappearance of the brachiopod-rich seep communities in the Cretaceous are unclear. Preliminary ideas for the origin of the temporal patterns in the brachiopod vs. bivalve dominance at seeps consider a role of palaeogeographic factors or distinct feeding strategies, but comprehensive models remain lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ager DV (1968) The supposedly ubiquitous Tethyan brachiopod Halorella and its relations. J Palaeontol Soc India 5–9:54–70

    Google Scholar 

  • Ager DV, Cossey SPJ, Mullin PR et al (1976) Brachiopod ecology in mid-Palaeozoic sediments near Khenifra, Morocco. Palaeogeog Palaeoclimat Palaeoecol 20:171–185

    Article  Google Scholar 

  • Algeo TJ, Luo GM, Song HY et al (2015) Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences 12:2131–2151

    Article  Google Scholar 

  • Angiolini L, Crippa G, Azmy K et al (2019) The giants of the phylum Brachiopoda: a matter of diet? Palaeontology 62(6):889–917

    Article  Google Scholar 

  • Arellano SM, Van Gaest AL, Johnson SB et al (2014) Larvae from deep-sea methane seeps disperse in surface waters. Proc Biol Sci 281(1786):20133276

    Google Scholar 

  • Baliński A (2012) The brachiopod succession through the Silurian-Devonian boundary beds at Dnistrove, Podolia, Ukraine. Acta Palaeontol Pol 57(4):897–924

    Article  Google Scholar 

  • Baliński A, Biernat G (2003) New observations on rhynchonelloid brachiopod Dzieduszyckia from the Famennian of Morocco. Acta Palaeontol Pol 48(3):463–474

    Google Scholar 

  • Baliński A, Sun Y (2013) Preservation of soft tissues in an Ordovician linguloid brachiopod from China. Acta Palaeontol Pol 58:115–120

    Google Scholar 

  • Ballanti LA, Tullis A, Ward PD (2012) Comparison of oxygen consumption by Terebratalia transversa (Brachiopoda) and two species of pteriomorph bivalve molluscs: implications for surviving mass extinctions. Paleobiology 38(4):525–537

    Article  Google Scholar 

  • Barbieri R, Ori GG, Cavalazzi B (2004) A Silurian cold-seep ecosystem from the Middle Atlas, Morocco. Palaios 19:527–542

    Article  Google Scholar 

  • Beal EJ, Claire MW, House CH (2011) High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Geobiology 9(2):131–139

    Google Scholar 

  • Beauchamp B, Savard M (1992) Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic. Palaios 7:434–450

    Article  Google Scholar 

  • Belka Z (1998) Early Devonian Kess-Kess carbonate mud mounds of the eastern Anti-Atlas (Morocco), and their relation to submarine hydrothermal venting. J Sediment Res 68:368–377

    Article  Google Scholar 

  • Bergquist DC, Fleckenstein C, Szalai EB et al (2004) Environment drives physiological variability in the cold seep mussel Bathymodiolus childressi. Limnol Oceanogr 49(3):706–715

    Article  Google Scholar 

  • Berner RA (2004) A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. Am J Sci 304:438–453

    Google Scholar 

  • Biernat G (1957) On Peregrinella multicarinata (Lamarck) (Brachiopoda). Acta Palaeontol Pol 2:19–50

    Google Scholar 

  • Biernat G (1967) New data on the genus Dzieduszyckia Siemiradzki, 1909 (Brachiopoda). Acta Palaeontol Pol 12:133–155

    Google Scholar 

  • Bitner MA, Hryniewicz K, Amano K et al (2019) New data on non-dimerelloid brachiopods from chemosynthesis-based communities. In: Abstract volume, 2nd international workshop on ancient hydrocarbon seep and cognate communities, 13–15 June 2019, Sapporo, Japan, p 24

    Google Scholar 

  • Bond D, Wignall PB, Racki G (2004) Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geol Mag 141:173–193

    Article  Google Scholar 

  • Boyer DL, Droser ML (2007) Devonian monospecific assemblages: new insights into the ecology of reduced-oxygen depositional settings. Lethaia 40(4):321–333

    Article  Google Scholar 

  • Brand U (1989) Biogeochemistry of late Paleozoic North American brachiopods and secular variation of seawater composition. Biogeochemistry 7:159–193

    Article  Google Scholar 

  • Brand U, Logan A, Hiller N et al (2003) Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography. Chem Geol 198:305–334

    Article  Google Scholar 

  • Brand U, Azmy K, Griesshaber E et al (2015) Carbon isotope composition in modern brachiopod calcite: a case of equilibrium with seawater? Chem Geol 411:81–96

    Article  Google Scholar 

  • Bristow TF, Grotzinger JP (2013) Sulfate availability and the geological record of cold-seep deposits. Geology 41(7):811–814

    Article  Google Scholar 

  • Buggisch W, Krumm S (2005) Palaeozoic cold seep carbonates from Europe and North Africa—an integrated isotopic and geochemical approach. Facies 51(1–4):566–583

    Article  Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeog Palaeoclimat Palaeoecol 232:362–407

    Article  Google Scholar 

  • Campbell KA, Bottjer DJ (1995a) Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments. Geology 23(4):321–324

    Article  Google Scholar 

  • Campbell KA, Bottjer DJ (1995b) Peregrinella: an early Cretaceous cold-seep-restricted brachiopod. Paleobiology 21(4):461–478

    Article  Google Scholar 

  • Campbell KA, Carlson C, Bottjer DJ (1993) Fossil cold seep limestones and associated chemosymbiotic macroinvertebrate faunas, Jurassic–Cretaceous Great Valley Group, California. In: Graham S, Lowe D (eds) Advances in the sedimentary geology of the Great Valley Group, Pacific section, vol 73. Society of Economic Paleontologists and Mineralogists, Los Angeles, pp 37–50

    Google Scholar 

  • Canet C, Anadón P, González-Partida E et al (2014) Paleozoic bedded barite deposits from Sonora (NW Mexico): evidence for a hydrocarbon seep environment of formation. Ore Geol Rev 56:292–300

    Article  Google Scholar 

  • Chen SC, Musat N, Lechtenfeld OJ et al (2019) Anaerobic oxidation of ethane by Archaea from a marine hydrocarbon seep. Nature 568(7750):108–111

    Article  Google Scholar 

  • Cloud PE Jr, Boucot AJ (1971) Dzieduszyckia in Nevada. Smithson Contrib Paleobiol 3:175–180

    Google Scholar 

  • Cooper GA (1983) The Terebratulacea (Brachiopoda) Triassic to recent: a study of the brachidia (loops). Smithson Contrib Paleobiol 50:1–290

    Article  Google Scholar 

  • Copper P (2002) Atrypida. In: Kaesler RL (ed) Brachiopoda 4 (rev), Rhynchonelliformea. Treatise on invertebrate paleontology, part H. Geological Society of America and University of Kansas, Boulder, pp H1377–H1474

    Google Scholar 

  • Copper P (2004) Silurian (late Llandovery–Ludlow) atrypid brachiopods from Gotland, Sweden, and the Welsh Borderlands, Great Britain. NRC Research Press, Ottawa

    Book  Google Scholar 

  • Cochran JK, Landman NH, Jakubowicz M et al (this volume) Geochemistry of cold hydrocarbon seeps: an overview. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps, Topics in Geobiology, vol. 50. Springer, Cham

    Google Scholar 

  • Curry GB, Brunton CHC (2007) Stratigraphic distribution of brachiopods. In: Selden PA (ed) Brachiopoda 6 (rev), supplement. Treatise on invertebrate paleontology, part H. Geological Society of America and University of Kansas, Boulder, pp 2901–2965

    Google Scholar 

  • Damborenea SE (2004) Early Jurassic Kalentera (Bivalvia) from Argentina and its palaeobiogeographical significance. Ameghiniana 41(2):145–198

    Google Scholar 

  • Duperron S (2010) The diversity of deep-sea mussels and their bacterial symbioses. In: Kiel S (ed) The vent and seep biota: aspects from microbes to ecosystems, Topics in geobiology, vol 33. Springer, Dordrecht, pp 137–167

    Chapter  Google Scholar 

  • Emig CC (1997) Ecology of inarticulated brachiopods. In: Kaesler RL (ed) Brachiopoda 1 (rev). Treatise on invertebrate paleontology, part H. Geological Society of America and University of Kansas, Boulder, pp 473–495

    Google Scholar 

  • Emig CC, Bitner MA, Álvarez F (2013) Phylum Brachiopoda. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (addenda 2013), Zootaxa, vol 3703, pp 75–78

    Google Scholar 

  • Freeman G, Lundelius J (2005) The transition from planktotrophy to lecithotrophy in larvae of lower Palaeozoic rhynchonelliform brachiopods. Lethaia 38(3):219–254

    Article  Google Scholar 

  • Fürsich FT, Hurst JM (1974) Environmental factors determining the distributions of brachiopods. Palaeontology 17:879–900

    Google Scholar 

  • Gischler E, Sandy MR, Peckmann J (2003) Ibergirhynchia contraria (F.A. Roemer, 1850) an early Carboniferous seep-related rhynchonellide brachiopod from the Harz Mountains, Germany—a possible successor to Dzieduszyckia? J Paleontol 77:293–303

    Article  Google Scholar 

  • Goedert JL, Sandy MR, Peckmann J (2021) First report of the megathyridid (Terebratullidina) brachiopod Argyrotheca from a hydrocarbon seep deposit, middle Eocene Humptulips Formation, Washington State, USA. PalZ 95(1):97–103

    Article  Google Scholar 

  • Griffin M, Pastorino G (2006) Madrynomya bruneti n. gen. and sp. (Bivalvia: ?Modiomorphidae): a Mesozoic survivor in the Tertiary of Patagonia? J Paleontol 80:272–282

    Article  Google Scholar 

  • Halamski AT, Baliński A (2018) Early Dalejan (Emsian) brachiopods from Hamar Laghdad (eastern Anti-Atlas, Morocco). Neues Jahrb Geol Palaontol Abh 290:127–152

    Article  Google Scholar 

  • Halevy I, Peters SE, Fischer WW (2012) Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337:331–334

    Article  Google Scholar 

  • Himmler T, Freiwald A, Stollhofen H et al (2008) Late Carboniferous hydrocarbon-seep carbonates from the glaciomarine Dwyka Group, southern Namibia. Palaeogeog Palaeoclimat Palaeoecol 257(1/2):185–197

    Article  Google Scholar 

  • Hollard H, Morin P (1973) Les gisements de Dzieduszyckia (Rhynchonellida) du Famennien inférieur du massif Hercynien central du Maroc. Serv Géol Maroc Notes Mém 249:7–14

    Google Scholar 

  • Holmer LE, Nakrem HA (2012) The lingulid brachiopod Lingularia from lowermost Cretaceous hydrocarbon seep bodies, Sassenfjorden area, central Spitsbergen, Svalbard. Norw J Geol 92:167–174

    Google Scholar 

  • Holmer L, Popov LE (2007) Linguliformea. In: Selden PA (ed) Brachiopoda 6 (rev), supplement. Treatise on invertebrate paleontology, part H. Geological Society of America and University of Kansas, Boulder, pp 2532–2574

    Google Scholar 

  • Hou H, Wang J (1984) The discovery of Early Cretaceous Peregrinella (Brachiopoda) in Xizang (Tibet). Bull Chin Acad Geol Sci 10:207–217

    Google Scholar 

  • Hryniewicz K, Jakubowicz M, Belka Z et al (2017) New bivalves from a Middle Devonian methane seep in Morocco: the oldest record of repetitive shell morphologies among some seep bivalve molluscs. J Syst Palaeontol 15(1):19–41

    Article  Google Scholar 

  • Hryniewicz K, Amano A, Bitner MA et al (2019) A late Paleocene fauna from shallow-water chemosynthesis-based ecosystems, Spitsbergen, Svalbard. Acta Palaeontol Pol 64(1):101–141

    Google Scholar 

  • Imlay RW (1980) Jurassic paleobiogeography of the conterminous United States in its continental setting. Geol Surv Prof Pap 1062:1–134

    Google Scholar 

  • Jacobs DK, Lindberg DR (1998) Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. PNAS 95:9396–9401

    Article  Google Scholar 

  • Jakubowicz M, Hryniewicz K, Belka Z (2017) Mass occurrence of seep-specific bivalves in the oldest-known cold seep metazoan community. Sci Rep 7:14292

    Article  Google Scholar 

  • Jakubowicz M, Berkowski B, Hryniewicz K et al (this volume) Middle Palaeozoic of Morocco: the earliest-known methane seep metazoan ecosystems. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps, Topics in geobiology, vol 50. Springer, Cham

    Google Scholar 

  • James MA, Ansell AD, Collins MJ et al (1992) Biology of living brachiopods. In: Blaxter JHS, Southward AJ (eds) Advances in marine biology, vol 28. Academic, London, pp 175–387

    Google Scholar 

  • Jenkins RG, Kaim A, Little CTS et al (2013) Worldwide distribution of the modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrocarbon seeps. Acta Palaeontol Pol 58(2):357–382

    Google Scholar 

  • Jenkins RG, Kaim A, Hikida Y et al (2018) Four new species of the Jurassic to Cretaceous seep-restricted bivalve Caspiconcha and implications for the history of chemosynthetic communities. J Paleontol 92(4):596–610

    Article  Google Scholar 

  • Johnson CA, Kelley KD, Leach DL (2004) Sulfur and oxygen isotopes in barite deposits of the western Brooks Range, Alaska and its implications for the origin of the Red Dog massive sulfide deposits. Econ Geol 99:1435–1448

    Article  Google Scholar 

  • Joye S (2020) The geology and biogeochemistry of hydrocarbon seeps. Ann Rev Earth Planet Sci 48:205–231

    Article  Google Scholar 

  • Kaim A, Schneider S (2012) A conch with a collar: early ontogeny of the enigmatic fossil bivalve Myoconcha. J Paleontol 86(4):652–658

    Article  Google Scholar 

  • Kaim A, Bitner MA, Jenkins RG et al (2010) A monospecific assemblage of terebratulide brachiopods in the Upper Cretaceous seep deposits of Omagari, Hokkaido, Japan. Acta Palaeontol Pol 55(1):73–84

    Article  Google Scholar 

  • Karaca D, Hensen C, Wallmann K (2010) Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica. Geochem Geophys Geosyst 11(8):Q08S27

    Article  Google Scholar 

  • Kiel S (2015) Did shifting seawater sulfate concentrations drive the evolution of deep-sea methane-seep ecosystems? Proc Biol Sci 282(1804):20142908

    Google Scholar 

  • Kiel S (2018) Three new bivalve genera from Triassic hydrocarbon-seep deposits in southern Turkey. Acta Palaeontol Pol 63:221–234

    Article  Google Scholar 

  • Kiel S, Little CT (2006) Cold-seep mollusks are older than the general marine mollusk fauna. Science 313(5792):1429–1431

    Article  Google Scholar 

  • Kiel S, Peckmann J (2008) Paleoecology and evolutionary significance of an early Cretaceous Peregrinella-dominated hydrocarbon-seep deposit on the Crimean Peninsula. Palaios 23(11):751–759

    Article  Google Scholar 

  • Kiel S, Peckmann J (2019) Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: a hypothesis. PLoS One 14(9):e0221887

    Article  Google Scholar 

  • Kiel S, Glodny J, Birgel D et al (2014) The paleoecology, habitats, and stratigraphic range of the enigmatic Cretaceous brachiopod Peregrinella. PLoS One 9(10):e109260

    Article  Google Scholar 

  • Kiel S, Krystyn L, Demirtaş F et al (2017) Late Triassic mollusk-dominated hydrocarbon-seep deposits from Turkey. Geology 45(8):751–754

    Google Scholar 

  • Kiel S, Hybertsen F, Hyžný M et al (2020) Mollusks and a crustacean from early Oligocene methane-seep deposits in the Talara Basin, northern Peru. Acta Palaeontol Pol 65:109–138

    Article  Google Scholar 

  • Kiel S, Huemer J, Gussone N et al (2021) Brachiopods in early Mesozoic cryptic habitats: Continuous colonization, rapid adaptation, and wide geographic distribution. Palaeogeog Palaeoclimat Palaeoecol 583:110668

    Article  Google Scholar 

  • Kniemeyer O, Musat F, Sievert S et al (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449(7164):898–901

    Article  Google Scholar 

  • Krylova EM, Sahling H (2011) Vesicomyidae (Bivalvia): current taxonomy and distribution. PLoS One 5:e9957

    Article  Google Scholar 

  • Lazăr I, Sandy MR, Campbell KA (2005) The paleoecologic, paleobiogeographic, and biostratigraphic significance of the Early Cretaceous rhynchonellid brachiopod Peregrinella from the southern Carpathian Mountains, Romania. Abstracts with Programs, Geological Society of America 37–14

    Google Scholar 

  • Lazăr I, Sandy MR, Forel M-B et al (2017) Late Triassic brachiopod Halorella assemblages from paleokarst cavities near Vaşcău, Apuseni Mountains, Romania. In: Lazăr I, Grădinaru M, Vasile S (eds) Abstract Book, The 11th Romanian Symposium of Palaeontology, 25–30 September 2017. University of Bucharest, Bucharest, pp 71–72

    Google Scholar 

  • Lazăr I, Schlagintweit F, Grădinaru E (2020) Halorina cryptica nov. ichnogen., nov. ichnosp., mass-occurrence of Upper Triassic crustacean microcoprolites from neptunian dikes and sills cutting the Dachstein-type carbonate platform and their paleoenvironmental significance (northern Apuseni Mountains, Romania). Geobios 61:31–39

    Article  Google Scholar 

  • Lee DE, Gregory MR, Lüter C et al (2008) Melvicalathis, a new brachiopod genus (Terebratulida: Chlidonophoridae) from deep sea volcanic substrates, and the biogeographic significance of the mid-ocean ridge system. Zootaxa 1866:136–150

    Article  Google Scholar 

  • Levin LA, Baco AR, Bowden DA et al (2016) Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front Mar Sci 3. https://www.frontiersin.org/articles/10.3389/fmars.2016.00072/full

  • Little CTS, Herrington RJ, Maslennikov VV et al (1997) Silurian hydrothermal-vent community from the southern Urals, Russia. Nature 385:146–148

    Article  Google Scholar 

  • Little CTS, Maslennikov VV, Morris NJ et al (1999) Two Palaeozoic hydrothermal vent communities from the southern Ural Mountains, Russia. Palaeontology 42:1043–1078

    Article  Google Scholar 

  • Little CTS, Danelian T, Herrington RJ et al (2004) Early Jurassic hydrothermal vent community from the Franciscan complex. California. J Paleontol 78(3):542–559

    Article  Google Scholar 

  • Logan A (2007) Geographic distribution of extant articulated brachiopods. In: Selden PA (ed) Brachiopoda 6 (rev), supplement. Treatise on invertebrate paleontology, part H. Geological Society of America and University of Kansas, Boulder, pp 3082–3115

    Google Scholar 

  • Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67(18):3403–3421

    Article  Google Scholar 

  • Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sci Lett 221(1–4):337–353

    Article  Google Scholar 

  • MacDonald IR, Bohrmann G, Escobar E et al (2004) Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 304(5673):999–1002

    Article  Google Scholar 

  • Manceñido MO, Dagys AS (1992) Brachiopods of the circum-Pacific region. In: Westerman GEG (ed) The Jurassic of the circum-Pacific, International Geological Correlation Programme Project 171. Cambridge University Press, New York, pp 328–333

    Google Scholar 

  • Manceñido MO, Gourvennec R (2008) A reappraisal of feeding current systems inferred for spire-bearing brachiopods. Earth Environ Sci Trans R Soc Edinburgh 98(3/4):345–356

    Google Scholar 

  • Manceñido MO, Owen EF (2001) Post-Palaeozoic Rhynchonellida (Brachiopoda): classification and evolutionary background. In: Brunton CHC, Cocks LRM, Long SL (eds) Brachiopods past and present, Systematics association special volume, vol 63. Taylor & Francis, London, pp 189–200

    Google Scholar 

  • Manceñido MO, Owen EF, Savage NM et al (2002) Dimerelloidea. In: Kaesler RL (ed) Brachiopoda 4 (rev), Rhynchonelliformea. Treatise on invertebrate paleontology, part H. Geological Society of America and University of Kansas, Boulder, pp 1236–1245

    Google Scholar 

  • Matyszkiewicz J, Krajewski M, Kochman A et al (2016) Oxfordian neptunian dykes with brachiopods from the southern part of the Kraków-Częstochowa Upland (southern Poland) and their links to hydrothermal vents. Facies 62:12

    Article  Google Scholar 

  • Menakova GN (1991) (Brachiopods). In: Dzhalilov MR (ed) (Atlas of the fossil fauna and flora of Tadzhikistan, Ordovician, Silurian, Devonian.) Donish, Dushanbe, pp 177–200 (In Russian)

    Google Scholar 

  • Meulepas RJW, Jagersma CG, Khadem AF et al (2009) Effect of environmental conditions on sulfate reduction with methane as electron donor by an Eckernförde Bay enrichment. Environ Sci Technol 43:6553–6559

    Article  Google Scholar 

  • Milne JDG, Campbell JD (1969) Upper Triassic fossils from Oroua Valley, Ruahine Range, New Zealand. Trans R Soc N Z Geol 6(18):247–250

    Google Scholar 

  • Nalivkin DV (1947) (Class Brachiopoda.) In: Nalivkin DV, Verber VN (eds) (Alas rukovodâŝih form iskopaemyh faun SSSR, tom 3, Devonskaâ Sistema.). VSEGEI–Gosgeoltehizdat, Leningrad, pp 63–134 (In Russian)

    Google Scholar 

  • Newton RJ, Reeves EP, Kafousia N et al (2011) Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic. Geology 39(1):7–10

    Article  Google Scholar 

  • Nie T, Guo W, Sun Y-L et al (2016) Age and distribution of the Late Devonian brachiopod genus Dzieduszyckia Siemiradzki, 1909 in southern China. Palaeoworld 25(4):600–615

    Article  Google Scholar 

  • Noll JH, Dutro JT Jr, Beus SS (1984) A new species of the Late Devonian (Famennian) brachiopod Dzieduszyckia from Sonora, Mexico. J Paleontol 58:1412–1421

    Google Scholar 

  • Olu K, Cordes EE, Fisher CR et al (2010) Biogeography and potential exchanges among the Atlantic equatorial belt cold-seep faunas. PLoS One 5:e11967

    Article  Google Scholar 

  • Orcutt BN, Joye SB, Kleindienst S et al (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Res Part II 57(21–23):2008–2021

    Article  Google Scholar 

  • Pálfy J, Kovács Z, Price GD et al (2017) A new occurrence of the Early Jurassic brachiopod Anarhynchia from the Canadian Cordillera confirms its membership in chemosynthesis-based ecosystems. Can J Earth Sci 54(12):1179–1193

    Article  Google Scholar 

  • Parkinson D, Cusack M (2007) Stable oxygen and carbon isotopes in extant brachiopod shells: keys to deciphering ancient ocean environments. In: Selden PA (ed) Brachiopoda 6 (rev), supplement. Treatise on invertebrate paleontology, part H. Geological Society of America and University of Kansas, Boulder, pp 2522–2531

    Google Scholar 

  • Peck LS (2008) Brachiopods and climate change. Earth Environ Sci Trans R Soc Edinburgh 98(3/4):451–456

    Google Scholar 

  • Peckmann J, Goedert JL (2005) Geobiology of ancient and modern methane-seeps. Palaeogeog Palaeoclimat Palaeoecol 227(1–3):1–5

    Article  Google Scholar 

  • Peckmann J, Gischler E, Oschmann W et al (2001) An early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology 29(3):271–274

    Article  Google Scholar 

  • Peckmann J, Campbell KA, Walliser OH et al (2007) A Late Devonian hydrocarbon-seep deposit dominated by dimerelloid brachiopods, Morocco. Palaios 22(2):114–122

    Article  Google Scholar 

  • Peckmann J, Birgel D, Kiel S (2009) Molecular fossils reveal fluid composition and flow intensity at a Cretaceous seep. Geology 37(9):847–850

    Article  Google Scholar 

  • Peckmann J, Kiel S, Sandy MR et al (2011) Mass occurrences of the brachiopod Halorella in Late Triassic methane-seep deposits, eastern Oregon. J Geol 119(2):207–220

    Article  Google Scholar 

  • Peckmann J, Sandy MR, Taylor DG et al (2013) An Early Jurassic brachiopod-dominated seep deposit enclosed by serpentinite, eastern Oregon, USA. Palaeogeog Palaeoclimat Palaeoecol 390:4–16

    Article  Google Scholar 

  • Poole FG, Murchey B, Stewart JH (1983) Bedded barite deposits of middle and late Paleozoic age in central Sonora, Mexico. Abstracts with programs, Geological Society of America 15–299

    Google Scholar 

  • Popiel-Barczyk E (1968) Upper Cretaceous terebratulids (Brachiopoda) from the Middle Vistula Gorge. Prace Muzeum Ziemi 12:3–86

    Google Scholar 

  • Posenato R, Morsilli M (1999) New species of Peregrinella (Brachiopoda) from the Lower Cretaceous of the Gargano Promontory (southern Italy). Cretaceous Res 20:641–654

    Article  Google Scholar 

  • Racki G, Baliński A, Wrona R et al (2012) Faunal dynamics across the Silurian–Devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: comparative analysis of the Ireviken and Klonk events. Acta Palaeontol Pol 57(4):795–832

    Article  Google Scholar 

  • Rhodes MC, Thompson RJ (1993) Comparative physiology of suspension-feeding in living brachiopods and bivalves—evolutionary implications. Paleobiology 19(3):322–334

    Article  Google Scholar 

  • Richardson JR (1997) Ecology of articulated brachiopods. In: Kaesler RL (ed) Brachiopoda 1 (rev). Treatise on invertebrate paleontology, part H. Geological Society of America and University of Kansas, Boulder, pp 441–460

    Google Scholar 

  • Roemer FA (1850) Beiträge zur Kenntnis des nordwestlichen Harzgebirges. Palaeontographica 3:1–67

    Google Scholar 

  • Romanin M, Crippa G, Ye F et al (2018) A sampling strategy for Recent and fossil brachiopods: selecting the optimal shell segment for geochemical analyses. Riv Ital Paleontol Stratigr 124(2):369–359

    Google Scholar 

  • Roterman CN, Lee WK, Liu X et al (2018) A new yeti crab phylogeny: Vent origins with indications of regional extinction in the East Pacific. PLoS One 13:e0194696

    Article  Google Scholar 

  • Rozman HS (1962) Stratigraphy and brachiopods of the Famennian stage of the Mugodzhary and adjacent areas. Tr Geologičeskogo Inst Akad Nauk SSSR 50:1–195. (In Russian)

    Google Scholar 

  • Rubin-Blum M, Antony CP, Borowski C et al (2017) Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol 2:17093

    Article  Google Scholar 

  • Sandy MR (1990) A new early Cretaceous articulate brachiopod from the Northwest Territories, Canada, and its paleobiogeographic significance. J Paleontol 64:367–372

    Article  Google Scholar 

  • Sandy MR (1995) A review of some Palaeozoic and Mesozoic brachiopods as members of cold seep chemosynthetic communities: ‘unusual’ palaeoecology and anomalous palaeobiogeographic patterns explained. Földtani Közlöny 125(3/4):241–258

    Google Scholar 

  • Sandy MR (2001) Mesozoic articulated brachiopods from the Western Cordillera of North America: their significance for palaeogeographic and tectonic reconstruction, palaeobiogeography and palaeoecology. In: Brunton CHC, Cocks LRM, Long SL (eds) Brachiopods past and present, Systematics association special volume, vol 63. Taylor & Francis, London, pp 394–410

    Google Scholar 

  • Sandy MR (2010) Brachiopods from ancient hydrocarbon seeps and hydrothermal vents. In: Kiel S (ed) The vent and seep biota: aspects from microbes to ecosystems, Topics in geobiology, vol 33. Springer, Dordrecht, pp 279–314

    Chapter  Google Scholar 

  • Sandy MR, Blodgett RB (1996) Peregrinella (Brachiopoda: Rhynchonellida) from the Early Cretaceous, Wrangellia Terrane, Alaska. In: Copper P, Jin J (eds) Brachiopods. Balkema, Rotterdam, pp 239–242

    Google Scholar 

  • Sandy MR, Campbell KA (1994) New rhynchonellid brachiopod genus from Tithonian (Upper Jurassic) cold seep deposits of California and its paleoenvironmental setting. J Paleontol 68:1243–1252

    Article  Google Scholar 

  • Sandy MR, Campbell KA (2003) Anarhynchia (Jurassic Brachiopoda) in a possible seep deposit from Bedford Canyon, California, USA. Abstracts with Programs, Geological Society of America 35(6):381

    Google Scholar 

  • Sandy MR, Peckmann J (2016) The Early Cretaceous brachiopod Peregrinella from Tibet: a confirmed hydrocarbon-seep occurrence for a seep-restricted genus. PalZ 90:691–699

    Article  Google Scholar 

  • Sandy MR, Owen EF, Blodgett RB (1995) Peregrinellid brachiopod (Brachiopoda, Rhynchonellida) from the Early Cretaceous of the Wrangellia Terrane, southern Alaska, U.S.A.—first record of a ‘Tethyan’ Peregrinella-ally from high paleolatitudes and its paleobiogeographic and paleoecologic significance. Abstracts, 3rd International Brachiopod Congress, Sudbury, Ontario, Canada, 2–5 September 1995, p 67

    Google Scholar 

  • Sandy MR, Lazăr I, Peckmann J et al (2012) Methane-seep brachiopod fauna within turbidites of the Sinaia Formation, eastern Carpathian Mountains, Romania. Palaeogeog Palaeoclimat Palaeoecol 323–325:42–59

    Article  Google Scholar 

  • Sandy MR, Hryniewicz K, Hammer Ø et al (2014) Brachiopods from Late Jurassic–Early Cretaceous hydrocarbon seep deposits, central Spitsbergen, Svalbard. Zootaxa 3884(6):501–532

    Article  Google Scholar 

  • Sassen R, Roberts HH, Carney R et al (2004) Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem Geol 205(3/4):195–217

    Article  Google Scholar 

  • Siemiradzki J (1909) Zbiory L. Zejsznera z kieleckiego dewonu. Sprawozdania Komisji Fizyograficznej 43:62–94

    Google Scholar 

  • Simoneit BRT, Kawka OE, Brault M (1988) Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem Geol 71(1–3):169–182

    Article  Google Scholar 

  • Singh R, Guzman MS, Bose A (2017) Anaerobic oxidation of ethane, propane, and butane by marine microbes: a mini review. Front Microbiol 8:2056

    Article  Google Scholar 

  • Smith EB, Scott KM, Nix ER et al (2000) Growth and condition of seep mussels (Bathymodiolus childressi) at a Gulf of Mexico brine pool. Ecology 81(9):2392–2403

    Article  Google Scholar 

  • Smrzka D, Zwicker J, Klügel A et al (2016) Establishing criteria to distinguish oil-seep from methane-seep carbonates. Geology 44(8):667–670

    Article  Google Scholar 

  • Smrzka D, Zwicker J, Misch D et al (2019) Oil seepage and carbonate formation: a case study from the southern Gulf of Mexico. Sedimentology 66(6):2318–2353

    Article  Google Scholar 

  • Stebbins A, Algeo TJ, Olsen C et al (2019) Sulfur-isotope evidence for recovery of seawater sulfate concentrations from a PTB minimum by the Smithian-Spathian transition. Earth-Sci Rev 195:83–95

    Article  Google Scholar 

  • Steeb P, Krause S, Linke P et al (2015) Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore of Costa Rica. Biogeosciences 12(22):6687–6706

    Article  Google Scholar 

  • Stefanoff M, Sandy MR (1998) Evolutionary relationships of Anarhynchia, a possible chemosynthetic Jurassic brachiopod from North America. Abstracts with Programs, Geological Society of America 30A-72–73

    Google Scholar 

  • Steinich G (1965) Die artikulaten Brachiopoden der Rügener Schreibkreide (Unter-Maastricht). Paläont Abh 2(1):1–220

    Google Scholar 

  • Sturz AA, Sturdivant AE, Leif RN et al (1996) Evidence for retrograde hydrothermal reactions in near surface sediments of Guaymas Basin, Gulf of California. Appl Geochem 11:645–665

    Article  Google Scholar 

  • Suess E (2014) Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Int J Earth Sci 103(7):1889–1916

    Article  Google Scholar 

  • Sulser H, Furrer H (2008) Dimerelloid rhynchonellide brachiopods in the Lower Jurassic of the Engadine (Canton Graubünden, National Park, Switzerland). Swiss J Geosci 101:203–222

    Article  Google Scholar 

  • Sun DL (1986) Discovery of Early Cretaceous Peregrinella (Brachiopoda) in Xizang (Tibet) and its significance. Palaeontol Catayana 2:211–227

    Google Scholar 

  • Sun Y, Gong S, Li N et al (2020) A new approach to discern the hydrocarbon sources (oil vs. methane) of authigenic carbonates forming at marine seeps. Mar Pet Geol 114:104230

    Article  Google Scholar 

  • Termier G, Termier H (1950) Paléontologie marocaine, II: Invertébrés de l’ere primaire, II: Bryozoaires et brachiopodes. Serv Géol Maroc Notes Mém 77:21–252

    Google Scholar 

  • Thayer CW (1985) Brachiopods versus mussels—competition, predation, and palatability. Science 228(4707):1527–1528

    Article  Google Scholar 

  • Timmers PH, Widjaja-Greefkes HC, Ramiro-Garcia J et al (2015) Growth and activity of ANME clades with different sulfate and sulfide concentrations in the presence of methane. Front Microbiol 6:988

    Article  Google Scholar 

  • Torres ME, Bohrmann G, Dubé TE et al (2003) Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins. Geology 31:897–900

    Article  Google Scholar 

  • Torsvik TH, Van der Voo R, Preeden U et al (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci Rev 114(3/4):325–368

    Article  Google Scholar 

  • Tunnicliffe A, Wilson K (1988) Brachiopod populations: distribution in fjords of British Columbia (Canada) and tolerance of low oxygen concentrations. Mar Ecol Prog Ser 47:117–128

    Article  Google Scholar 

  • Valentine JW, Jablonski D (2010) Origins of marine patterns of biodiversity: some correlates and applications. Palaeontology 53(6):1203–1210

    Article  Google Scholar 

  • Van Dover CL, German CR, Speer KG et al (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295(5558):1253–1257

    Article  Google Scholar 

  • Vrijenhoek RC (2013) On the instability and evolutionary age of deep-sea chemosynthetic communities. Deep-Sea Res Part II 92:189–200

    Article  Google Scholar 

  • Wegener G, Boetius A (2009) An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes. Biogeosciences 6:867–876

    Article  Google Scholar 

  • Wendt J, Belka Z (1991) Age and depositional environment of Upper Devonian (early Frasnian to early Famennian) black shales and limestones (Kellwasser facies) in the eastern Anti-Atlas, Morocco. Facies 25:51–90

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161(1–3):291–314

    Article  Google Scholar 

  • Witts JD, Newton RJ, Mills BJW et al (2018) The impact of the Cretaceous-Paleogene (K-Pg) mass extinction event on the global sulfur cycle: evidence from Seymour Island, Antarctica. Geochim Cosmochim Acta 230:17–45

    Article  Google Scholar 

  • Wortmann UG, Paytan A (2012) Rapid variability of seawater chemistry over the past 130 million years. Science 337:334–336

    Article  Google Scholar 

  • Zezina ON (2003) On the ecological, morphological, and evolutionary features of brachiopods living in marginal and extreme environments. Paleontol J 37(3):263–269

    Google Scholar 

  • Zezina ON (2008) Biogeography of the Recent brachiopods. Paleontol J 42(8):830–858

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Andrzej Kaim (Institute of Paleobiology), for his encouragement and support during the project and the opportunity to use the photograph of the mass accumulation of Anarhynchia gabbi. We are deeply indebted to the referees, Elisabeth M. Harper (University of Cambridge) and Miguel Manceñido (Universidad Nacional de La Plata), for critical and valuable comments. Sincere thanks are expressed to Krzysztof Hryniewicz and Andrzej Kaim (Institute of Paleobiology), Russell Shapiro (California State University in Chico) and Steffen Kiel (Swedish Museum of Natural History) for discussions on various aspects of the palaeoecology of fossil seep-related brachiopods and bivalves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Baliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baliński, A., Bitner, M.A., Jakubowicz, M. (2022). Brachiopods at Hydrocarbon Seeps. In: Kaim, A., Cochran, J.K., Landman, N.H. (eds) Ancient Hydrocarbon Seeps. Topics in Geobiology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-031-05623-9_8

Download citation

Publish with us

Policies and ethics