Skip to main content

Algae as Potential Feedstock for Bioethanol Production

  • Chapter
  • First Online:
Bioethanol Production

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 552 Accesses

Abstract

Alternative renewable fuels are becoming increasingly important due to concerns about fuel security, the economy, and climate change. This study provides a thorough overview of algae harvesting and processing technologies as well as their applications in the development of biofuels like bioethanol. Because of their rapid growth, microalgae have been identified as a potential pollution control agent and a viable replacement for currently used non-renewable resources. Algal biofuels have the potential to be a renewable energy source. Algae are a good 3G feedstock for bioethanol production because of their fast development, high biomass yield, and high lipid and carbohydrate content. Algae are projected to overtake 1G and 2G feedstocks soon due to their enormous potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dragone, G., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2010). Third generation biofuels from microalgae.

    Google Scholar 

  2. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.

    Article  CAS  Google Scholar 

  3. Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68.

    Article  CAS  Google Scholar 

  4. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  PubMed  Google Scholar 

  5. Sirajunnisa, A. R., & Surendhiran, D. (2016). Algae–A quintessential and positive resource of bioethanol production: A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 248–267.

    Article  CAS  Google Scholar 

  6. da Silva Cardoso, A., Vieira, G. E. G., & Marques, A. K. (2011). O uso de microalgas para a obtenção de biocombustíveis. Revista Brasileira de Biociências, 9(4), 542.

    Google Scholar 

  7. Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198.

    Article  CAS  PubMed  Google Scholar 

  8. Demirbas, A., & Demirbas, M. F. (2010). Algae energy: algae as a new source of biodiesel. Springer Science & Business Media.

    Google Scholar 

  9. Ullah, K., Ahmad, M., Sharma, V. K., Lu, P., Harvey, A., Zafar, M., & Sultana, S. (2015). Assessing the potential of algal biomass opportunities for bioenergy industry: A review. Fuel, 143, 414–423.

    Article  CAS  Google Scholar 

  10. Zhan, J., Rong, J., & Wang, Q. (2017). Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505–8517.

    Article  CAS  Google Scholar 

  11. John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102(1), 186–193.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., Cheng, Y., & Deng, S. (2010). Review of biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2(4), 1–30.

    Google Scholar 

  13. Carlsson, A. S., Van Beilen, J. B., Möller, R., & Clayton, D. (2007). Micro-and macro-algae: utility for industrial applications. Outputs from the EPOBIO project, p. 82.

    Google Scholar 

  14. Subhadra, B., & Edwards, M. (2010). An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy, 38(9), 4897–4902.

    Article  CAS  Google Scholar 

  15. Shilton, A. N., Mara, D. D., Craggs, R., & Powell, N. (2008). Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: The energy and carbon management opportunities of waste stabilisation ponds. Water Science and Technology, 58(1), 253–258.

    Article  CAS  PubMed  Google Scholar 

  16. Adams, J. M., Gallagher, J. A., & Donnison, I. S. (2009). Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of Applied Phycology, 21(5), 569–574.

    Article  CAS  Google Scholar 

  17. Nobe, R., Sakakibara, Y., Fukuda, N., Yoshida, N., Ogawa, K., & Suiko, M. (2003). Purification and characterization of laminaran hydrolases from Trichoderma viride. Bioscience, Biotechnology, and Biochemistry, 67(6), 1349–1357.

    Article  CAS  PubMed  Google Scholar 

  18. Horn, S. J., Aasen, I. M., & Østgaard, K. (2000). Production of ethanol from mannitol by Zymobacter palmae. Journal of Industrial Microbiology and Biotechnology, 24(1), 51–57.

    Article  CAS  Google Scholar 

  19. Hong, I. K., Jeon, H., & Lee, S. B. (2014). Comparison of red, brown and green seaweeds on enzymatic saccharification process. Journal of Industrial and Engineering Chemistry, 20(5), 2687–2691.

    Article  CAS  Google Scholar 

  20. Fasahati, P., Woo, H. C., & Liu, J. J. (2015). Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Applied Energy, 139, 175–187.

    Article  CAS  Google Scholar 

  21. Rajkumar, R., Yaakob, Z., & Takriff, M. S. (2014). Potential of micro and macro algae for biofuel production: A brief review. BioResources, 9(1), 1606–1633.

    Google Scholar 

  22. Khan, S. A., Hussain, M. Z., Prasad, S., & Banerjee, U. C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9), 2361–2372.

    Article  CAS  Google Scholar 

  23. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    Article  CAS  Google Scholar 

  24. Qiu, R., Gao, S., Lopez, P. A., & Ogden, K. L. (2017). Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28, 192–199.

    Article  Google Scholar 

  25. He, L., Chen, Y., Wu, X., Chen, S., Liu, J., & Li, Q. (2020). Effect of physical factors on the growth of Chlorella vulgaris on enriched media using the methods of orthogonal analysis and response surface methodology. Water, 12(1), 34.

    Article  CAS  Google Scholar 

  26. Bibi, R., Ahmad, Z., Imran, M., Hussain, S., Ditta, A., Mahmood, S., & Khalid, A. (2017). Algal bioethanol production technology: A trend towards sustainable development. Renewable and Sustainable Energy Reviews, 71, 976–985.

    Article  CAS  Google Scholar 

  27. Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941.

    Article  CAS  Google Scholar 

  28. Ashokkumar, V., & Rengasamy, R. (2012). Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresource Technology, 104, 394–399.

    Article  CAS  PubMed  Google Scholar 

  29. Bajhaiya, A. K., Mandotra, S. K., Suseela, M. R., Toppo, K., & Ranade, S. (2010). Algal biodiesel: The next generation biofuel for India. Asian Journal of Experimental Biological Sciences, 4, 728–739.

    Google Scholar 

  30. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25.

    Article  CAS  PubMed  Google Scholar 

  31. Katarzyna, L., Sai, G., & Singh, O. A. (2015). Non-enclosure methods for non-suspended microalgae cultivation: Literature review and research needs. Renewable and Sustainable Energy Reviews, 42, 1418–1427.

    Article  CAS  Google Scholar 

  32. Doe, U. S. (2010). National algal biofuels technology roadmap. US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program.

    Google Scholar 

  33. Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2(1), 012701.

    Article  CAS  Google Scholar 

  34. Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S., & Goodenough, U. (2009). Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell, 8(12), 1856–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grima, E. M., Belarbi, E. H., Fernández, F. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20(7–8), 491–515.

    Article  Google Scholar 

  36. Singh, G., & Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217, 499–508.

    Article  PubMed  Google Scholar 

  37. Lee, D. H., Bae, C. Y., Han, J. I., & Park, J. K. (2013). In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules. Analytical Chemistry, 85(18), 8749–8756.

    Article  CAS  PubMed  Google Scholar 

  38. Divakaran, R., & Pillai, V. S. (2002). Flocculation of river silt using chitosan. Water Research, 36(9), 2414–2418.

    Article  CAS  PubMed  Google Scholar 

  39. Giovannoni, S. J., DeLong, E. F., Schmidt, T. M., & Pace, N. R. (1990). Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Applied and Environmental Microbiology, 56(8), 2572–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bosma, R., Van Spronsen, W. A., Tramper, J., & Wijffels, R. H. (2003). Ultrasound, a new separation technique to harvest microalgae. Journal of Applied Phycology, 15(2), 143–153.

    Article  Google Scholar 

  41. Gröschl, M. (1998). Ultrasonic separation of suspended particles-Part I: Fundamentals. Acta Acustica United with Acustica, 84(3), 432–447.

    Google Scholar 

  42. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1(1), 20–43.

    Article  Google Scholar 

  43. Munoz, R., & Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40(15), 2799–2815.

    Article  CAS  PubMed  Google Scholar 

  44. Judge, D., & Earnshaw, D. (2003). The European Parliament. Palgrave: Basingstoke, UK.

    Google Scholar 

  45. Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342–348.

    Article  CAS  PubMed  Google Scholar 

  46. Harun, R., Jason, W. S. Y., Cherrington, T., & Danquah, M. K. (2011). Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 88(10), 3464–3467.

    Article  CAS  Google Scholar 

  47. Kim, K. H., Choi, I. S., Kim, H. M., Wi, S. G., & Bae, H. J. (2014). Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresource Technology, 153, 47–54.

    Article  CAS  PubMed  Google Scholar 

  48. Harun, R., Danquah, M. K., & Forde, G. M. (2010). Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology & Biotechnology, 85(2), 199–203.

    CAS  Google Scholar 

  49. Surendhiran, D., Sirajunnisa, A. R., & Vijay, M. (2015) An alternative method for production of microalgal biodiesel using novel Bacillus lipase. 3 Biotech, 5(5), 715–725.

    Google Scholar 

  50. Tamayo, P., & Del Rosario, E. J. (2014). Chemical analysis and utilization of Sargassum sp. as substrate for ethanol production. Iranian (Iranica) Journal of Energy & Environment, 5(2).

    Google Scholar 

  51. Kumar, S., Gupta, R., Kumar, G., Sahoo, D., & Kuhad, R. C. (2013). Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresource Technology, 135, 150–156.

    Article  CAS  PubMed  Google Scholar 

  52. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology, 69(6), 627–642.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Algae as Potential Feedstock for Bioethanol Production. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_7

Download citation

Publish with us

Policies and ethics