Skip to main content

Valorization of Organic Fraction of MSW for Bioethanol Production

  • Chapter
  • First Online:
Bioethanol Production

Abstract

Municipal solid waste management is a big problem all over the world. The improper management of municipal solid waste (MSW) can be extremely dangerous. Researchers from all around the world are working on a plethora of methods to reduce the generation of waste and oversee waste management for socioeconomic and environmental welfare. Using holistic and integrated methodologies, value-added goods can be made from municipal garbage. The framework for analyzing municipal solid waste to energy conversion and waste-derived bioeconomy in order to meet sustainable development goals is very important. In the context of the circular economy, it is critical to valorize the organic fraction of municipal solid waste (OFMSW). This chapter aims to look the state-of-the-art of valorization of OFMSW in bioethanol production. Further, different challenges and future aspects are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Usmani, Z., Kumar, V., Varjani, S., Gupta, P., Rani, R., & Chandra, A. (2020). Municipal solid waste to clean energy system: a contribution toward sustainable development. In Current Developments in Biotechnology and Bioengineering (pp. 217–231). Elsevier.

    Google Scholar 

  2. Pavi, S., Kramer, L. E., Gomes, L. P., & Miranda, L. A. S. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology, 228, 362–367.

    Article  CAS  PubMed  Google Scholar 

  3. Tang, Z., Li, W., Tam, V. W., & Xue, C. (2020). Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resources, Conservation & Recycling: X, 6, 100036.

    Google Scholar 

  4. Istrate, I. R., Iribarren, D., Gálvez-Martos, J. L., & Dufour, J. (2020). Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, 157, 104778.

    Article  Google Scholar 

  5. Neehaul, N., Jeetah, P., & Deenapanray, P. (2020). Energy recovery from municipal solid waste in Mauritius: Opportunities and challenges. Environmental Development, 33, 100489.

    Article  Google Scholar 

  6. Yadav, V., & Karmakar, S. (2020). Sustainable collection and transportation of municipal solid waste in urban centers. Sustainable Cities and Society, 53, 101937.

    Article  Google Scholar 

  7. Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian Journal of Microbiology, 60(2), 125–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yaman, C., Anil, I., & Alagha, O. (2020). Potential for greenhouse gas reduction and energy recovery from MSW through different waste management technologies. Journal of Cleaner Production, 264, 121432.

    Article  Google Scholar 

  9. Louati, A. (2016). Modeling municipal solid waste collection: A generalized vehicle routing model with multiple transfer stations, gather sites and inhomogeneous vehicles in time windows. Waste Management, 52, 34–49.

    Article  PubMed  Google Scholar 

  10. Nikku, M., Deb, A., Sermyagina, E., & Puro, L. (2019). Reactivity characterization of municipal solid waste and biomass. Fuel, 254, 115690.

    Article  CAS  Google Scholar 

  11. Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications.

    Google Scholar 

  12. Byun, J., & Han, J. (2021). Environmental analysis of bioethanol production strategies from corn stover via enzymatic and nonenzymatic sugar production. Bioresource Technology, 328, 124808.

    Article  CAS  PubMed  Google Scholar 

  13. Kwon, O., & Han, J. (2021). Organic-waste-derived butyric acid-to-biodiesel supply-chain network: Strategic planning design using a deterministic snapshot model. Journal of Environmental Management, 293, 112848.

    Article  CAS  PubMed  Google Scholar 

  14. Barampouti, E. M., Mai, S., Malamis, D., Moustakas, K., & Loizidou, M. (2019). Liquid biofuels from the organic fraction of municipal solid waste: A review. Renewable and Sustainable Energy Reviews, 110, 298–314.

    Article  CAS  Google Scholar 

  15. Barik, S., & Paul, K. K. (2017). Potential reuse of kitchen food waste. Journal of Environmental Chemical Engineering, 5(1), 196–204.

    Article  CAS  Google Scholar 

  16. Rane, N. M., Admane, S. V., Sapkal, R. S. (2019). Adsorption of hexavalent chromium from wastewater by using sweetlime and lemon peel powder by batch studies. In Waste Management and Resource Efficiency (pp. 1207–1220). Springer, Singapore.

    Google Scholar 

  17. Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M., & Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresource Technology, 241, 1101–1117.

    Article  CAS  PubMed  Google Scholar 

  18. Bhatia, S. K., Joo, H. S., & Yang, Y. H. (2018). Biowaste-to-bioenergy using biological methods–a mini-review. Energy Conversion and Management, 177, 640–660.

    Article  CAS  Google Scholar 

  19. Zhang, Z., O’Hara, I. M., Mundree, S., Gao, B., Ball, A. S., Zhu, N., Bai, Z., & Jin, B. (2016). Biofuels from food processing wastes. Current Opinion in Biotechnology, 38, 97–105.

    Article  CAS  PubMed  Google Scholar 

  20. Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12.

    Article  CAS  PubMed  Google Scholar 

  21. Al Seadi, T., Owen, N. E., Hellström, H., & Kang, H. (2013). Source Separation of MSW.IEA Bioenergy.

    Google Scholar 

  22. Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. R., & Ng, W. J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 93, 380–399.

    Article  Google Scholar 

  23. Romero-Cedillo, L., Poggi-Varaldo, H. M., Ponce-Noyola, T., Ríos-Leal, E., Ramos-Valdivia, A. C., Cerda-García Rojas, C. M., & Tapia-Ramírez, J. (2017). A review of the potential of pretreated solids to improve gas biofuels production in the context of an OFMSW biorefinery. Journal of Chemical Technology & Biotechnology, 92(5), 937–958.

    Article  CAS  Google Scholar 

  24. Clarke, W. P. (2018). The uptake of anaerobic digestion for the organic fraction of municipal solid waste–push versus pull factors. Bioresource technology, 249, 1040–1043.

    Article  CAS  PubMed  Google Scholar 

  25. Seo, J. Y., Heo, J. S., Kim, T. H., Joo, W. H., & Crohn, D. M. (2004). Effect of vermiculite addition on compost produced from Korean food wastes. Waste Management, 24(10), 981–987.

    Article  CAS  PubMed  Google Scholar 

  26. De Clercq, D., Wen, Z., Fan, F., & Caicedo, L. (2016). Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing. Renewable and Sustainable Energy Reviews, 59, 1676–1685.

    Article  Google Scholar 

  27. Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and sustainable energy reviews, 36, 107–122.

    Article  CAS  Google Scholar 

  28. Sharholy, M., Ahmad, K., Mahmood, G., & Trivedi, R. C. (2008). Municipal solid waste management in Indian cities—A review. Waste Management, 28(2), 459–467.

    Article  PubMed  Google Scholar 

  29. Chatterjee, B., & Mazumder, D. (2016). Anaerobic digestion for the stabilization of the organic fraction of municipal solid waste: A review. Environmental Reviews, 24(4), 426–459.

    Article  CAS  Google Scholar 

  30. Ho, D. P., Ngo, H. H., & Guo, W. (2014). A mini review on renewable sources for biofuel. Bioresource Technology, 169, 742–749.

    Article  CAS  PubMed  Google Scholar 

  31. Hafid, H. S., Shah, U. K. M., Baharuddin, A. S., & Ariff, A. B. (2017). Feasibility of using kitchen waste as future substrate for bioethanol production: A review. Renewable and Sustainable Energy Reviews, 74, 671–686.

    Article  CAS  Google Scholar 

  32. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27.

    Article  CAS  Google Scholar 

  33. John, I., Muthukumar, K., & Arunagiri, A. (2017). A review on the potential of citrus waste for D-Limonene, pectin, and bioethanol production. International Journal of Green Energy, 14(7), 599–612.

    Article  CAS  Google Scholar 

  34. Wan, C., & Li, Y. (2011). Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresource Technology, 102(20), 9788–9793.

    Article  CAS  PubMed  Google Scholar 

  35. Hafid, H. S., Nor’Aini, A. R., Mokhtar, M. N., Talib, A. T., Baharuddin, A. S., & Kalsom, M. S. U. (2017). Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Management, 67, 95–105.

    Article  CAS  PubMed  Google Scholar 

  36. Hafid, H. S., Shah, U. K. M., & Baharudin, A. S. (2015). Enhanced fermentable sugar production from kitchen waste using various pretreatments. Journal of Environmental Management, 156, 290–298.

    Article  CAS  PubMed  Google Scholar 

  37. Alamanou, D. G., Malamis, D., Mamma, D., & Kekos, D. (2015). Bioethanol from dried household food waste applying non-isothermal simultaneous saccharification and fermentation at high substrate concentration. Waste and Biomass Valorization, 6(3), 353–361.

    Article  CAS  Google Scholar 

  38. Cekmecelioglu, D., & Uncu, O. N. (2013). Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Management, 33(3), 735–739.

    Article  CAS  PubMed  Google Scholar 

  39. Ballesteros, M., Sáez, F., Ballesteros, I., Manzanares, P., Negro, M. J., Martínez, J. M., Castañeda, R., & Oliva Dominguez, J. M. (2010). Ethanol production from the organic fraction obtained after thermal pretreatment of municipal solid waste. Applied Biochemistry and Biotechnology, 161(1), 423–431.

    Article  CAS  PubMed  Google Scholar 

  40. Pandey, A., Soccol, C.R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology74(1), 69–80.

    Google Scholar 

  41. Ahmed, B., Tyagi, V. K., Aboudi, K., Naseem, A., Álvarez-Gallego, C. J., Fernández-Güelfo, L. A., Kazmi, A. A., & Romero-García, L. I. (2021). Thermally enhanced solubilization and anaerobic digestion of organic fraction of municipal solid waste. Chemosphere, 282, 131136.

    Article  CAS  PubMed  Google Scholar 

  42. Vavouraki, A. I., Angelis, E. M., & Kornaros, M. (2013). Optimization of thermo-chemical hydrolysis of kitchen wastes. Waste Management, 33(3), 740–745.

    Article  CAS  PubMed  Google Scholar 

  43. Li, A., Antizar-Ladislao, B., & Khraisheh, M. (2007). Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess and Biosystems Engineering, 30(3), 189–196.

    Article  PubMed  CAS  Google Scholar 

  44. Tang, Y. Q., Koike, Y., Liu, K., An, M. Z., Morimura, S., Wu, X. L., & Kida, K. (2008). Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass and Bioenergy, 32(11), 1037–1045.

    Article  CAS  Google Scholar 

  45. Yan, S., Li, J., Chen, X., Wu, J., Wang, P., Ye, J., & Yao, J. (2011). Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renewable Energy, 36(4), 1259–1265.

    Article  CAS  Google Scholar 

  46. Yan, S., Wang, P., Zhai, Z., & Yao, J. (2011). Fuel ethanol production from concentrated food waste hydrolysates in immobilized cell reactors by Saccharomyces cerevisiae H058. Journal of Chemical Technology & Biotechnology, 86(5), 731–738.

    Article  CAS  Google Scholar 

  47. Hafid, H. S., Abdul Rahman, N. A., Md Shah, U. K., Samsu Baharudin, A., & Zakaria, R. (2016). Direct utilization of kitchen waste for bioethanol production by separate hydrolysis and fermentation (SHF) using locally isolated yeast. International Journal of Green Energy, 13(3), 248–259.

    Article  CAS  Google Scholar 

  48. Ch, A. K., Chan, E. S., Rudravaram, R., Narasu, M. L., Rao, L. V., & Ravindra, P. (2007). Economics and environmental impact of bioethanol production technologies: An appraisal. Biotechnology and Molecular Biology Reviews, 2(1), 14–32.

    Google Scholar 

  49. Wingren, A., Galbe, M., & Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress, 19(4), 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  50. Fan, Z., & Lynd, L. R. (2007). Conversion of paper sludge to ethanol. I: Impact of feeding frequency and mixing energy characterization. Bioprocess and Biosystems engineering30(1), 27–34.

    Google Scholar 

  51. Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1(2), 119–134.

    Article  CAS  Google Scholar 

  52. Mahmoodi, P., Karimi, K., & Taherzadeh, M. J. (2018). Hydrothermal processing as pretreatment for efficient production of ethanol and biogas from municipal solid waste. Bioresource Technology, 261, 166–175.

    Article  CAS  PubMed  Google Scholar 

  53. Bolzonella, D., Fatone, F., Pavan, P., & Cecchi, F. (2005). Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Industrial & Engineering Chemistry Research, 44(10), 3412–3418.

    Article  CAS  Google Scholar 

  54. Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., & Pandey, R. A. (2010). Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 4(1), 77–93.

    Article  CAS  Google Scholar 

  55. Ma, H., Wang, Q., Qian, D., Gong, L., & Zhang, W. (2009). The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage. Renewable Energy, 34(6), 1466–1470.

    Article  Google Scholar 

  56. Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52(2), 858–875.

    Article  CAS  Google Scholar 

  57. Ntaikou, I., Menis, N., Alexandropoulou, M., Antonopoulou, G., & Lyberatos, G. (2018). Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Bioresource Technology, 263, 75–83.

    Article  CAS  PubMed  Google Scholar 

  58. Su, B., Heshmati, A., Geng, Y., & Yu, X. (2013). A review of the circular economy in China: Moving from rhetoric to implementation. Journal of Cleaner Production, 42, 215–227.

    Article  Google Scholar 

  59. Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768.

    Article  Google Scholar 

  60. Rathore, P., & Sarmah, S. P. (2020). Economic, environmental and social optimization of solid waste management in the context of circular economy. Computers & Industrial Engineering, 145, 106510.

    Article  Google Scholar 

  61. Abad, V., Avila, R., Vicent, T., & Font, X. (2019). Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresource Technology, 283, 10–17.

    Article  CAS  PubMed  Google Scholar 

  62. Chen, H., Tang, M., Yang, X., Tsang, Y. F., Wu, Y., Wang, D., & Zhou, Y. (2021). Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge. Chemical Engineering Journal, 408, 127251.

    Article  CAS  Google Scholar 

  63. Behrooznia, L., Sharifi, M., & Hosseinzadeh-Bandbafha, H. (2020). Comparative life cycle environmental impacts of two scenarios for managing an organic fraction of municipal solid waste in Rasht-Iran. Journal of Cleaner Production, 268, 122217.

    Article  CAS  Google Scholar 

  64. Carlini, M., Mosconi, E. M., Castellucci, S., Villarini, M., & Colantoni, A. (2017). An economical evaluation of anaerobic digestion plants fed with organic agro-industrial waste. Energies, 10(8), 1165.

    Article  Google Scholar 

  65. Cudjoe, D., & Han, M. S. (2020). Economic and environmental assessment of landfill gas electricity generation in urban districts of Beijing municipality. Sustainable Production and Consumption, 23, 128–137.

    Article  Google Scholar 

  66. Awasthi, M. K., Sarsaiya, S., Wainaina, S., Rajendran, K., Awasthi, S. K., Liu, T., Duan, Y., Jain, A., Sindhu, R., Binod, P., & Pandey, A. (2021). Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. Renewable and Sustainable Energy Reviews, 144, 110837.

    Article  CAS  Google Scholar 

  67. dos Santos, I. F. S., Mensah, J. H. R., Gonçalves, A. T. T., & Barros, R. M. (2020). Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential. Renewable Energy, 149, 1386–1394.

    Article  Google Scholar 

  68. Taşkın, A., & Demir, N. (2020). Life cycle environmental and energy impact assessment of sustainable urban municipal solid waste collection and transportation strategies. Sustainable Cities and Society, 61, 102339.

    Article  Google Scholar 

  69. Chanthakett, A., Arif, M. T., Khan, M. M. K., & Oo, A. M. (2021). Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management, 291, 112661.

    Article  PubMed  Google Scholar 

  70. Ramos, A., Berzosa, J., Espi, J., Clarens, F., & Rouboa, A. (2020). Life cycle costing for plasma gasification of municipal solid waste: A socio-economic approach. Energy Conversion and Management, 209, 112508.

    Article  Google Scholar 

  71. Van Fan, Y., Klemeš, J. J., Walmsley, T. G., & Bertók, B. (2020). Implementing Circular Economy in municipal solid waste treatment system using P-graph. Science of The Total Environment, 701, 134652.

    Article  CAS  PubMed  Google Scholar 

  72. Mabalane, P. N., Oboirien, B. O., Sadiku, E. R., & Masukume, M. (2021). A techno-economic analysis of anaerobic digestion and gasification hybrid system: Energy recovery from municipal solid waste in South Africa. Waste and Biomass Valorization, 12(3), 1167–1184.

    Article  CAS  Google Scholar 

  73. Meng, F., Dornau, A., Mason, S. J. M., Thomas, G. H., Conradie, A., & McKechnie, J. (2021). Bioethanol from autoclaved municipal solid waste: Assessment of environmental and financial viability under policy contexts. Applied Energy, 298, 117118.

    Article  CAS  Google Scholar 

  74. Vaez, S., Karimi, K., Mirmohamadsadeghi, S., & Jeihanipour, A. (2021). An optimal biorefinery development for pectin and biofuels production from orange wastes without enzyme consumption. Process Safety and Environmental Protection, 152, 513–526.

    Article  CAS  Google Scholar 

  75. Wang, Z., Lv, J., Gu, F., Yang, J., & Guo, J. (2020). Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study. Science of the Total Environment, 709, 136096.

    Article  CAS  PubMed  Google Scholar 

  76. Rajendran, N., Gurunathan, B., Han, J., Krishna, S., Ananth, A., Venugopal, K., & Priyanka, R. S. (2021). Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis. Bioresource Technology, 337, 125498.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Valorization of Organic Fraction of MSW for Bioethanol Production. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_6

Download citation

Publish with us

Policies and ethics