Skip to main content

Current Trends in Pretreatment Technologies for Bioethanol Production: Biorefinery Concept

  • Chapter
  • First Online:
Bioethanol Production

Abstract

The call for an alternative and clean energy has grown as fossil sources have been depleted and energy needs have increased. The use of readily available lignocellulosic biomass for creating cost-effective and environmentally beneficial large-scale biorefinery applications has given this field a much-needed boost. Pretreatment is an important step in converting biomass into high-value products like sugars and biofuels. To overcome the recalcitrance of lignocellulosic biomass and accelerate its decomposition into individual units—like, cellulose, hemicellulose, and lignin-different pretreatment techniques are used. Traditional pretreatment procedures are unsuitable for industrial scale-up due to their lack of sustainability and practicability. Milling, microwave, extrusion, ammonia fiber explosion, solvents, and other selected physical and chemical pretreatment techniques are included in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rumyantseva, A., Zhutyaeva, S., & Lazareva, N. (2019). Promotion of investment in renewable energy projects. In E3S Web of Conferences (Vol. 91, p. 03006). EDP Sciences.

    Google Scholar 

  2. Sahoo, B. K., De, S., & Meikap, B. C. (2011). Improvement of grinding characteristics of Indian coal by microwave pre-treatment. Fuel Processing Technology, 92(10), 1920–1928.

    Article  CAS  Google Scholar 

  3. Pinchuk, V. A., Sharabura, T. A., & Kuzmin, A. V. (2017). Improvement of coal-water fuel combustion characteristics by using of electromagnetic treatment. Fuel Processing Technology, 167, 61–68.

    Article  CAS  Google Scholar 

  4. Melikoglu, M. (2017). Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey. Renewable and Sustainable Energy Reviews, 74, 800–808.

    Article  Google Scholar 

  5. Vickers, N. J. (2017). Animal communication: When i’m calling you, will you answer too? Current Biology, 27(14), R713–R715.

    Article  CAS  PubMed  Google Scholar 

  6. Asomaning, J., Haupt, S., Chae, M., & Bressler, D. C. (2018). Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renewable and Sustainable Energy Reviews, 92, 642–657.

    Article  CAS  Google Scholar 

  7. Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318.

    Article  CAS  PubMed  Google Scholar 

  8. Mohan, S. V., Modestra, J. A., Amulya, K., Butti, S. K., & Velvizhi, G. (2016). A circular bioeconomy with biobased products from CO2 sequestration. Trends in Biotechnology, 34(6), 506–519.

    Article  CAS  Google Scholar 

  9. Chen, B., & Liu, J. (2004). Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cement and Concrete Research, 34(7), 1259–1263.

    Article  CAS  Google Scholar 

  10. Limayem, A., & Andricke, S. (2012). Biomassa lignocelulósica para produção de bioetanol: perspectivas atuais, questões potenciais e perspectivas futuras. Progresso em Energia e Combustão da Ciência38, 449–467.

    Google Scholar 

  11. Vinatier, C., Mrugala, D., Jorgensen, C., Guicheux, J., & Noël, D. (2009). Cartilage engineering: A crucial combination of cells, biomaterials and biofactors. Trends inBbiotechnology, 27(5), 307–314.

    Article  CAS  Google Scholar 

  12. Rabemanolontsoa, H., & Saka, S. (2013). Comparative study on chemical composition of various biomass species. RSC Advances, 3(12), 3946–3956.

    Article  CAS  Google Scholar 

  13. Yu, J., Paterson, N., Blamey, J., & Millan, M. (2017). Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 191, 140–149.

    Article  CAS  Google Scholar 

  14. Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58.

    Article  CAS  PubMed  Google Scholar 

  15. Werpy, T., & Petersen, G. (2004). Top value-added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas (No. DOE/GO-102004–1992). National Renewable Energy Lab., Golden, CO (US).

    Google Scholar 

  16. Kassaye, S., Pant, K. K., & Jain, S. (2016). Synergistic effect of ionic liquid and dilute sulphuric acid in the hydrolysis of microcrystalline cellulose. Fuel Processing Technology, 148, 289–294.

    Article  CAS  Google Scholar 

  17. Dora, S., Bhaskar, T., Singh, R., Naik, D. V., & Adhikari, D. K. (2012). Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst. Bioresource Technology, 120, 318–321.

    Article  CAS  PubMed  Google Scholar 

  18. Veluchamy, C., Kalamdhad, A. S., & Gilroyed, B. H. (2018). Advanced pretreatment strategies for bioenergy production from biomass and biowaste. In Handbook of environmental materials management (pp.1–19).

    Google Scholar 

  19. Quereshi, S., Ahmad, E., Pant, K. K., & Dutta, S. (2019). Insights into microwave-assisted synthesis of 5-ethoxymethylfurfural and ethyl levulinate using tungsten disulfide as a catalyst. ACS Sustainable Chemistry & Engineering, 8(4), 1721–1729.

    Article  CAS  Google Scholar 

  20. Sasaki, M., Adschiri, T., & Arai, K. (2003). Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresource Technology, 86(3), 301–304.

    Article  PubMed  Google Scholar 

  21. Ruan, T., Zeng, R., Yin, X. Y., Zhang, S. X., & Yang, Z. H. (2016). Water hyacinth (Eichhornia crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis. BioResources, 11(1), 2372–2380.

    Article  CAS  Google Scholar 

  22. Imman, S., Arnthong, J., Burapatana, V., Champreda, V., & Laosiripojana, N. (2015). Fractionation of rice straw by a single-step solvothermal process: Effects of solvents, acid promoters, and microwave treatment. Renewable Energy, 83, 663–673.

    Article  CAS  Google Scholar 

  23. Christopher, M., Mathew, A. K., Kumar, M. K., Pandey, A., & Sukumaran, R. K. (2017). A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. Bioresource Technology, 242, 178–183.

    Article  CAS  PubMed  Google Scholar 

  24. Demirbaş, A. (2005). Thermochemical conversion of biomass to liquid products in the aqueous medium. Energy Sources, 27(13), 1235–1243.

    Article  CAS  Google Scholar 

  25. Ma, Y., Tan, W., Wang, J., Xu, J., Wang, K., & Jiang, J. (2020). Liquefaction of bamboo biomass and production of three fractions containing aromatic compounds. Journal of Bioresources and Bioproducts, 5(2), 114–123.

    Article  CAS  Google Scholar 

  26. Sindhu, R., Kuttiraja, M., Binod, P., Sukumaran, R. K., & Pandey, A. (2014). Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renewable Energy, 62, 362–368.

    Article  CAS  Google Scholar 

  27. Elander, R. T., Dale, B. E., Holtzapple, M., Ladisch, M. R., Lee, Y. Y., Mitchinson, C., Saddler, J. N., & Wyman, C. E. (2009). Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): Corn stover pretreatment. Cellulose, 16(4), 649–659.

    Article  CAS  Google Scholar 

  28. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861.

    Article  CAS  PubMed  Google Scholar 

  29. Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels, 41–65.

    Google Scholar 

  30. Galbe, M., & Wallberg, O. (2019). Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for Biofuels, 12(1), 1–26.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ruiz, H. A., Conrad, M., Sun, S. N., Sanchez, A., Rocha, G. J., Romaní, A., Castro, E., Torres, A., Rodríguez-Jasso, R. M., Andrade, L. P., & Smirnova, I. (2020). Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 299, 122685.

    Article  CAS  PubMed  Google Scholar 

  32. Perez-Cantu, L., Schreiber, A., Schütt, F., Saake, B., Kirsch, C., & Smirnova, I. (2013). Comparison of pretreatment methods for rye straw in the second generation biorefinery: Effect on cellulose, hemicellulose and lignin recovery. Bioresource Technology, 142, 428–435.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, R., Su, R., Qi, W., & He, Z. (2011). Bioconversion of lignocellulose into bioethanol: Process intensification and mechanism research. Bioenergy Research, 4(4), 225–245.

    Article  Google Scholar 

  34. Alberts, G., Ayuso, M., Bauen, A., Boshell, F., Chudziak, C., Gebauer, J. P., German, L., Kaltschmitt, M., Nattrass, L., Ripken, R., & Robson, P. (2016). Innovation outlook: Advanced liquid biofuels.

    Google Scholar 

  35. Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., & Verma, P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 199, 106244.

    Article  CAS  Google Scholar 

  36. Duque, A., Álvarez, C., Doménech, P., Manzanares, P., & Moreno, A. D. (2021). Advanced bioethanol production: From novel raw materials to integrated biorefineries. Processes, 9(2), 206.

    Article  CAS  Google Scholar 

  37. Wietschel, L., Messmann, L., Thorenz, A., & Tuma, A. (2021). Environmental benefits of large-scale second-generation bioethanol production in the EU: An integrated supply chain network optimization and life cycle assessment approach. Journal of Industrial Ecology, 25(3), 677–692.

    Article  CAS  Google Scholar 

  38. Yoo, C. G., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 301, 122784.

    Article  CAS  PubMed  Google Scholar 

  39. Naresh Kumar, M., Ravikumar, R., Thenmozhi, S., Ranjith Kumar, M., & Kirupa Shankar, M. (2019). Choice of pretreatment technology for sustainable production of bioethanol from lignocellulosic biomass: Bottle necks and recommendations. Waste and Biomass Valorization, 10(6), 1693–1709.

    Article  CAS  Google Scholar 

  40. Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I., Chamorro, M. Á., Sáez, F., Ballesteros, M., & Moreno, A. D. (2017). A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation3(2), 15.

    Google Scholar 

  41. Kim, S. M., Dien, B. S., Tumbleson, M. E., Rausch, K. D., & Singh, V. (2016). Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling. Bioresource Technology, 216, 706–713.

    Article  CAS  PubMed  Google Scholar 

  42. de Carvalho Silvello, M. A., Martínez, J., & Goldbeck, R. (2020). Application of supercritical CO2 treatment enhances enzymatic hydrolysis of sugarcane bagasse. BioEnergy Research, 13(3), 786–796.

    Article  CAS  Google Scholar 

  43. Diez, V., DeWeese, A., Kalb, R. S., Blauch, D. N., & Socha, A. M. (2019). Cellulose dissolution and biomass pretreatment using quaternary ammonium ionic liquids prepared from H-, G-, and S-type lignin-derived benzaldehydes and dimethyl carbonate. Industrial & Engineering Chemistry Research, 58(35), 16009–16017.

    Article  CAS  Google Scholar 

  44. Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20(4), 809–815.

    Article  CAS  Google Scholar 

  45. Kang, K. E., Park, D. H., & Jeong, G. T. (2013). Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresource Technology, 132, 160–165.

    Article  CAS  PubMed  Google Scholar 

  46. Wi, S. G., Choi, I. S., Kim, K. H., Kim, H. M., & Bae, H. J. (2013). Bioethanol production from rice straw by popping pretreatment. Biotechnology for Biofuels, 6(1), 1–7.

    Article  CAS  Google Scholar 

  47. Liu, Y., Zhou, H., Wang, S., Wang, K., & Su, X. (2015). Comparison of γ-irradiation with other pretreatments followed with simultaneous saccharification and fermentation on bioconversion of microcrystalline cellulose for bioethanol production. Bioresource Technology, 182, 289–295.

    Article  CAS  PubMed  Google Scholar 

  48. Bak, J. S. (2014). Process evaluation of electron beam irradiation-based biodegradation relevant to lignocellulose bioconversion. Springerplus, 3(1), 1–6.

    Article  Google Scholar 

  49. Oliva, J. M., Negro, M. J., Álvarez, C., Manzanares, P., & Moreno, A. D. (2020). Fermentation strategies for the efficient use of olive tree pruning biomass from a flexible biorefinery approach. Fuel, 277, 118171.

    Article  CAS  Google Scholar 

  50. Carrozza, C. F., Papa, G., Citterio, A., Sebastiano, R., Simmons, B. A., & Singh, S. (2019). One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar. Bioresource Technology, 294, 122214.

    Article  CAS  PubMed  Google Scholar 

  51. Moset, V., Xavier, C. D. A. N., Feng, L., Wahid, R., & Møller, H. B. (2018). Combined low thermal alkali addition and mechanical pre-treatment to improve biogas yield from wheat straw. Journal of Cleaner Production, 172, 1391–1398.

    Article  CAS  Google Scholar 

  52. Zhang, H., Zhang, P., Ye, J., Wu, Y., Liu, J., Fang, W., Xu, D., Wang, B., Yan, L., & Zeng, G. (2018). Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw. Bioresource Technology, 247, 147–156.

    Article  CAS  PubMed  Google Scholar 

  53. He, J., & Chen, J. P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67–78.

    Article  CAS  PubMed  Google Scholar 

  54. El Achkar, J. H., Lendormi, T., Salameh, D., Louka, N., Maroun, R. G., Lanoisellé, J. L., & Hobaika, Z. (2018). Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresource Technology, 247, 881–889.

    Article  PubMed  CAS  Google Scholar 

  55. Peral, C. (2016). Biomass pretreatment strategies (technologies, environmental performance, economic considerations, industrial implementation). In Biotransformation of agricultural waste and by-products (pp. 125–160). Elsevier.

    Google Scholar 

  56. Bhutto, A. W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A. A., Karim, S., & Yu, G. (2017). Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 122, 724–745.

    Article  CAS  Google Scholar 

  57. Cheng, J. J. (2017). Anaerobic digestion for biogas production. In Biomass to renewable energy processes (pp. 143–194). CRC Press.

    Google Scholar 

  58. Santos, C. C., de Souza, W., Sant’Anna, C., & Brienzo, M. (2018). Elephant grass leaves have lower recalcitrance to acid pretreatment than stems, with higher potential for ethanol production. Industrial Crops and Products111, 193–200

    Google Scholar 

  59. Sarip, H., Hossain, M. S., Azemi, M., & Allaf, K. (2016). A review of the thermal pretreatment of lignocellulosic biomass towards glucose production: Autohydrolysis with DIC technology. BioResources, 11(4), 10625–10653.

    Article  CAS  Google Scholar 

  60. Jędrzejczyk, M., Soszka, E., Czapnik, M., Ruppert, A. M., & Grams, J. (2019). Physical and chemical pretreatment of lignocellulosic biomass. In Second and third generation of feedstocks (pp. 143–196). Elsevier.

    Google Scholar 

  61. Ethaib, S., Omar, R., Mazlina, M. S., Radiah, A. D., & Zuwaini, M. (2020, June). Evaluation solvent level effect on sugar yield during microwave-assisted pretreatment. In IOP Conference Series: Materials Science and Engineering (Vol. 871, No. 1, p. 012034). IOP Publishing.

    Google Scholar 

  62. Sivanarutselvi, S., Poornima, P., Muthukumar, K., & Velan, M. (2019). Studies on effect of alkali pretreatment of banana pseudostem for fermentable sugar production for biobutanol production. Journal of Environmental Biology, 40(3), 393–399.

    Article  CAS  Google Scholar 

  63. Ho, M. C., Ong, V. Z., & Wu, T. Y. (2019). Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization—A review. Renewable and Sustainable Energy Reviews, 112, 75–86.

    Article  CAS  Google Scholar 

  64. Song, X., Jiang, Y., Rong, X., Wei, W., Wang, S., & Nie, S. (2016). Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide. Bioresource Technology, 216, 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  65. Sahay, S. (2020). Impact of Pretreatment Technologies for Biomass to Biofuel Production. In Substrate Analysis for Effective Biofuels Production (pp. 173–216). Springer

    Google Scholar 

  66. Weerasai, K., Suriyachai, N., Poonsrisawat, A., Arnthong, J., Unrean, P., Laosiripojana, N., & Champreda, V. (2014). Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. BioResources, 9(4), 5988–6001.

    Article  Google Scholar 

  67. Ab Rasid, N. S., Zainol, M. M., & Amin, N. A. S. (2020). Pretreatment of agroindustry waste by ozonolysis for synthesis of biorefinery products. In Refining Biomass Residues for Sustainable Energy and Bioproducts (pp. 303–336). Academic Press.

    Google Scholar 

  68. Ballesteros, L. F., Michelin, M., Vicente, A. A., Teixeira, J. A., & Cerqueira, M. Â. (2018). Lignocellulosic materials: sources and processing technologies. In Lignocellulosic Materials and Their Use in Bio-based Packaging (pp. 13–33). Springer.

    Google Scholar 

  69. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  70. Nitsos, C., Rova, U., & Christakopoulos, P. (2018). Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies, 11(1), 50.

    Article  CAS  Google Scholar 

  71. Choi, J. H., Jang, S. K., Kim, J. H., Park, S. Y., Kim, J. C., Jeong, H., Kim, H. Y., & Choi, I. G. (2019). Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renewable Energy, 130, 952–960.

    Article  CAS  Google Scholar 

  72. Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33.

    Article  CAS  PubMed  Google Scholar 

  73. Yoo, C. G., Pu, Y., & Ragauskas, A. J. (2017). Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Current Opinion in Green and Sustainable Chemistry, 5, 5–11.

    Article  Google Scholar 

  74. Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., & Mikkola, J. P. (2010). Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Industrial Crops and Products, 32(3), 175–201.

    Article  CAS  Google Scholar 

  75. Reddy, P. (2015). A critical review of ionic liquids for the pretreatment of lignocellulosic biomass. South African Journal of Science, 111(11–12), 1–9.

    Google Scholar 

  76. Wu, Y., Hao, Y., Wei, X., Shen, Q., Ding, X., Wang, L., Zhao, H., & Lu, Y. (2017). Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes. Biotechnology for biofuels, 10(1), 1–15.

    Article  CAS  Google Scholar 

  77. Baêta, B. E. L., de Miranda Cordeiro, P. H., Passos, F., Gurgel, L. V. A., de Aquino, S. F., & Fdz-Polanco, F. (2017). Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 245, 66–72.

    Article  PubMed  CAS  Google Scholar 

  78. Bonfiglio, F., Cagno, M., Rey, F., Torres, M., Böthig, S., Menéndez, P., & Mussatto, S. I. (2019). Pretreatment of switchgrass by steam explosion in a semi-continuous pre-pilot reactor. Biomass and Bioenergy, 121, 41–47.

    Article  CAS  Google Scholar 

  79. Guerrero, A. B., Ballesteros, I., & Ballesteros, M. (2017). Optimal conditions of acid-catalysed steam explosion pretreatment of banana lignocellulosic biomass for fermentable sugar production. Journal of Chemical Technology & Biotechnology, 92(9), 2351–2359.

    Article  CAS  Google Scholar 

  80. Martino, D. C., Colodette, J. L., Chandra, R., & Saddler, J. (2017). Steam explosion pretreatment used to remove hemicellulose to enhance the production of a eucalyptus organosolv dissolving pulp. Wood Science and Technology, 51(3), 557–569.

    Article  CAS  Google Scholar 

  81. Mathew, A. K., Parameshwaran, B., Sukumaran, R. K., & Pandey, A. (2016). An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresource Technology, 199, 13–20.

    Article  CAS  PubMed  Google Scholar 

  82. Chundawat, S. P. S., Pal, R. K., Zhao, C., Campbell, T., Teymouri, F., Videto, J., Nielson, C., Wieferich, B., Sousa, L., and Dale, B. E., et al. 2020. “Ammonia fiber expansion (AFEX) pretreatment of lignocellulosic biomass,” Journal of Visualized Experiments 2020(158), e57488.

    Google Scholar 

  83. Rabemanolontsoa, H., & Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91.

    Article  CAS  PubMed  Google Scholar 

  84. Al Afif, R., Wendland, M., Amon, T., & Pfeifer, C. (2020). Supercritical carbon dioxide enhanced pre-treatment of cotton stalks for methane production. Energy, 194, 116903.

    Article  CAS  Google Scholar 

  85. Putrino, F. M., Tedesco, M., Bodini, R. B., & de Oliveira, A. L. (2020). Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose. Bioresource Technology, 309, 123387.

    Article  CAS  PubMed  Google Scholar 

  86. Xiang, C., Liu, S. Y., Fu, Y., & Chang, J. (2019). A quick method for producing biodiesel from soy sauce residue under supercritical carbon dioxide. Renewable Energy, 134, 739–744.

    Article  CAS  Google Scholar 

  87. Islam, S. M., Elliott, J. R., & Ju, L. K. (2018). Minimization of fermentation inhibitor generation by carbon dioxide-water based pretreatment and enzyme hydrolysis of guayule biomass. Bioresource Technology, 251, 84–92.

    Article  CAS  PubMed  Google Scholar 

  88. Carneiro, T. F., Timko, M., Prado, J. M., & Berni, M. (2016). Biomass pretreatment with carbon dioxide. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery (pp. 385–407). Elsevier.

    Google Scholar 

  89. Ximenes, E., Farinas, C. S., Kim, Y., & Ladisch, M. R. (2017). Hydrothermal pretreatment of lignocellulosic biomass for bioethanol production. In Hydrothermal processing in biorefineries (pp. 181–205). Springer.

    Google Scholar 

  90. Kim, Y., Kreke, T., Mosier, N. S., & Ladisch, M. R. (2014). Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnology and Bioengineering, 111(2), 254–263.

    Article  PubMed  CAS  Google Scholar 

  91. Ko, J. K., Kim, Y., Ximenes, E., & Ladisch, M. R. (2015). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2), 252–262.

    Article  CAS  PubMed  Google Scholar 

  92. Kumar, S., Kothari, U., Kong, L., Lee, Y. Y., & Gupta, R. B. (2011). Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass and Bioenergy, 35(2), 956–968.

    Article  CAS  Google Scholar 

  93. Zhang, Y., Wang, Z., Feng, J., & Pan, H. (2020). Maximizing utilization of poplar wood by microwave-assisted pretreatment with methanol/dioxane binary solvent. Bioresource Technology, 300, 122657.

    Article  CAS  PubMed  Google Scholar 

  94. Wang, S., Li, F., Zhang, P., Jin, S., Tao, X., Tang, X., Ye, J., Nabi, M., & Wang, H. (2017). Ultrasound assisted alkaline pretreatment to enhance enzymatic saccharification of grass clipping. Energy Conversion and Management, 149, 409–415.

    Article  CAS  Google Scholar 

  95. Ramadoss, G., & Muthukumar, K. (2014). Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production. Biochemical Engineering Journal, 83, 33–41.

    Article  CAS  Google Scholar 

  96. Ravindran, R., Jaiswal, S., Abu-Ghannam, N., & Jaiswal, A. K. (2017). Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste. Bioresource Technology, 224, 680–687.

    Article  CAS  PubMed  Google Scholar 

  97. Wang, Z., Hou, X., Sun, J., Li, M., Chen, Z., & Gao, Z. (2018). Comparison of ultrasound-assisted ionic liquid and alkaline pretreatment of Eucalyptus for enhancing enzymatic saccharification. Bioresource Technology, 254, 145–150.

    Article  CAS  PubMed  Google Scholar 

  98. Bussemaker, M. J., & Zhang, D. (2013). Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial & Engineering Chemistry Research, 52(10), 3563–3580.

    Article  CAS  Google Scholar 

  99. Zhang, Y., Li, Q., Su, J., Lin, Y., Huang, Z., Lu, Y., Sun, G., Yang, M., Huang, A., Hu, H., & Zhu, Y. (2015). A green and efficient technology for the degradation of cellulosic materials: Structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt. Bioresource Technology, 177, 176–181.

    Article  CAS  PubMed  Google Scholar 

  100. Xu, J., Xu, J., Zhang, S., Xia, J., Liu, X., Chu, X., Duan, J., & Li, X. (2018). Synergistic effects of metal salt and ionic liquid on the pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresource Technology, 249, 1058–1061.

    Article  CAS  PubMed  Google Scholar 

  101. George, A., Brandt, A., Tran, K., Zahari, S. M. N. S., Klein-Marcuschamer, D., Sun, N., Sathitsuksanoh, N., Shi, J., Stavila, V., Parthasarathi, R., & Singh, S. (2015). Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chemistry, 17(3), 1728–1734.

    Article  CAS  Google Scholar 

  102. Loow, Y. L., Wu, T. Y., Tan, K. A., Lim, Y. S., Siow, L. F., Md. Jahim, J., Mohammad, A. W., & Teoh, W. H. (2015). Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. Journal of Agricultural and Food Chemistry63(38), 8349–8363

    Google Scholar 

  103. López-Linares, J. C., Romero, I., Moya, M., Cara, C., Ruiz, E., & Castro, E. (2013). Pretreatment of olive tree biomass with FeCl3 prior enzymatic hydrolysis. Bioresource Technology, 128, 180–187.

    Article  PubMed  CAS  Google Scholar 

  104. Tejirian, A., & Xu, F. (2010). Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Applied and Environmental Microbiology, 76(23), 7673–7682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pandey, A., Tiwari, S., Jadhav, S. K., & Tiwari, K. L. (2014). Efficient microorganism for bioethanol production from lignocellulosic Azolla. Research Journal of Environmental Sciences, 8(6), 350–355.

    Article  Google Scholar 

  106. Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech5(5), 597–609.

    Google Scholar 

  107. Zabed, H. M., Akter, S., Yun, J., Zhang, G., Awad, F. N., Qi, X., & Sahu, J. N. (2019). Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews, 105, 105–128.

    Article  CAS  Google Scholar 

  108. Flores-Gómez, C. A., Escamilla Silva, E. M., Zhong, C., Dale, B. E., da Costa Sousa, L., & Balan, V. (2018). Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery. Biotechnology for Biofuels, 11(1), 1–18.

    Article  CAS  Google Scholar 

  109. Romero, I., López-Linares, J. C., Moya, M., & Castro, E. (2018). Optimization of sugar recovery from rapeseed straw pretreated with FeCl3. Bioresource Technology, 268, 204–211.

    Article  CAS  PubMed  Google Scholar 

  110. Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., & Kothandaraman, G. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89, S20–S28.

    Article  CAS  Google Scholar 

  111. Fedorova, E., Caló, A., & Pongrácz, E. (2019). Balancing socio-efficiency and resilience of energy provisioning on a regional level, Case Oulun Energia in Finland. Clean Technologies, 1(1), 273–293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Current Trends in Pretreatment Technologies for Bioethanol Production: Biorefinery Concept. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_3

Download citation

Publish with us

Policies and ethics