Skip to main content

Poro-Visco-Elasticity in Biomechanics: Optimal Control

  • Chapter
  • First Online:
Research in Mathematics of Materials Science

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 31))

  • 451 Accesses

Abstract

In this paper, we address optimal control problems subject to fluid flows through poro-visco-elastic media. In particular, we focus on the case of given permeability k(x, t), which translates into a convex control problem, with both distributed and boundary controls. We focus on investigating the problem of maintaining the solid displacement and Darcy pressure close to desired values (motivated by applications related to tissue perfusion in the eye and its relationship to the development of glaucoma) using the sources present in the system as control variables. The results provided in this paper include existence and uniqueness of optimal control, as well as the characterization of the optimal control through the first order necessary optimality conditions, based on the adjoint system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Auriault, E. Sanchez-Palencia, Etude du comportement macroscopique d’un milieu poreux sature deformable. J. Mec. 16(4), 575–603 (1977)

    MATH  Google Scholar 

  2. H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman, G. Guidoboni, Local sensitivity via the complex-step derivative approximation for 1-D poro-elastic and poro-visco-elastic models. Math. Control Relat. Fields 9(4), 623–642 (2019)

    Article  MathSciNet  Google Scholar 

  3. H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman, G. Guidoboni, Sensitivity analysis in poro-elastic and poro-visco-elastic models with respect to boundary data. Quart. Appl. Math. 75, 697–735 (2017)

    Article  MathSciNet  Google Scholar 

  4. H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman, K. Tillman, The complex-step method for sensitivity analysis of non-smooth problems arising in biology. Eur. J. Math. Comput. Appl. 3(3), 16–68 (2015)

    Google Scholar 

  5. H.T. Banks, K. Bekele-Maxwell, L. Bociu, C. Wang, Sensitivity via the complex-step method for delay differential equations with non-smooth initial data. Quart. Appl. Math. 75, 231–248 (2017)

    Article  MathSciNet  Google Scholar 

  6. A. Bhole, B. Flynn, M. Liles, N.S.C. Dimarzio, J. Ruberti, Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: implications for load-bearing matrix growth and stability. Philos. Trans. R. Soc. A 367, 3339–3362 (2009)

    Article  Google Scholar 

  7. M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  8. L. Bociu, S. Canic, B. Muha, J. Webster, Multilayered poroelasticity interacting with Stokes flow. SIAM J. Math. Anal. 53(6), 6243–6279

    Google Scholar 

  9. L. Bociu, G. Guidoboni, R. Sacco, M. Verri, On the role of compressibility in poroviscoelastic models. Math. Biosci. Eng. 16(5), 6167–6208 (2019)

    Article  MathSciNet  Google Scholar 

  10. L. Bociu, G. Guidoboni, R. Sacco, J. Webster, Analysis of nonlinear poro-elastic and poro-viscoelastic models. Arch. Rational Mech. Anal. 222, 1445–1519 (2016)

    Article  MathSciNet  Google Scholar 

  11. L. Bociu, M. Noorman, Poro-visco-elastic models in biomechanics: sensitivity analysis. Commun. Appl. Anal. 23(1), 61–77 (2019)

    Google Scholar 

  12. L. Bociu, J. Webster, Nonlinear quasi-static poroelasticity. J. Differ. Equa. 296, 242–278 (2021)

    Article  MathSciNet  Google Scholar 

  13. R. Camp, M. Liles, J. Beale, N.S.B. Flynn, E. Moore, S. Murthy, J. Ruberti, Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer. J. Am. Chem. Soc. 133, 4073–4078 (2011)

    Article  Google Scholar 

  14. Y. Cao, S. Chen, A.J. Meir, Analysis and numerical approximations of equations of nonlinear poroelasticity. DCDS-B 18, 1253–1273 (2013)

    Article  MathSciNet  Google Scholar 

  15. P. Causin, G. Guidoboni, A. Harris, D. Prada, R. Sacco, S. Terragni, A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Math. Biosci. 257, 33–41 (2014)

    Article  MathSciNet  Google Scholar 

  16. E. Detournay, A.H.-D. Cheng, Comprehensive rock engineering: principles, practice and projects, in Fundamentals of poroelasticity, vol. II. Analysis and Design Method, ed. by C. Fairhurst (Pergamon Press, Oxford, 1993), pp. 113–171

    Google Scholar 

  17. M.R. DiSilvestro, J.-K.F. Suh, Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration. Ann. Biomed. Eng. 30, 792–800 (2002)

    Article  Google Scholar 

  18. B. Flynn, A.B.N. Saeidi, M. Liles, C. Dimarzio, J. Ruberti, Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8). PLoS One 5, e12337 (2010)

    Article  Google Scholar 

  19. R. Grytz, C. Girkin, V. Libertiaux, J. Downs, Perspectives on biomechanical growth and remodeling mechanisms in glaucoma. Mech. Res. Commun. 42, 92–106 (2012)

    Article  Google Scholar 

  20. R. Grytz, M. Fazio, M. Girard, V. Libertiaux, L. Bruno, S. Gardiner, C. Girkin, J. Downs, Material properties of the posterior human sclera. J. Mech. Behav. Biomed. Mater. 29, 602–617 (2014)

    Article  Google Scholar 

  21. G. Guidoboni, A. Harris, L. Carichino, Y. Arieli, B.A. Siesky, Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model. Math. Biosci. Eng. 11(3), 523–546 (2014)

    Article  MathSciNet  Google Scholar 

  22. R. Hollows, P. Graham, Intraocular pressure, glaucoma, and glaucoma suspects in a defined population. Br. J. Ophthalmol. 50, 570–577 (1996)

    Article  Google Scholar 

  23. W.M. Lai, J.S. Hou, V.C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  24. A.F. Mak, The apparent viscoelastic behavior of articular cartilage - the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108, 123–130 (1986)

    Article  Google Scholar 

  25. J. Morgan-Davies, N. Taylor, A.R. Hill, P. Aspinall, C.J. O’Brien, A. Azuara-Blanco, Three dimensional analysis of the lamina cribrosa in glaucoma. Br. J. Ophthalmol. 88(10), 1299–1304 (2004)

    Article  Google Scholar 

  26. S. Nicaise, About the Lamé System in a Polygonal or a Polyhedral Domain and a Coupled Problem between the Lamé System and the Plate Equation I: Regularity of Solutions. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze 4e série 19, 327–361 (1992)

    Google Scholar 

  27. S. Owczarek, A Galerkin method for Biot consolidation model. Math. Mech. Solids 15, 42–56 (2010)

    Article  MathSciNet  Google Scholar 

  28. D. Prada, A. Harris, G. Guidoboni, B. Siesky, A.M. Huang, J. Arciero. Autoregulation in the optic nerve head. Major review. Surv. Ophthalmol. 61(2), 164–186 (2016)

    Article  Google Scholar 

  29. T. Roose, P.A. Netti, L. Munn, Y. Boucher, R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model. Microvascul. Res. 66, 204–212 (2003)

    Article  Google Scholar 

  30. R. Sacco, G. Guidoboni, A.G. Mauri, A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences (Academic, London, 2019)

    Google Scholar 

  31. L.A. Setton, W. Zhu, V.C. Mow, The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J. Biomech. 26, 581–592 (1993)

    Article  Google Scholar 

  32. R. Shah, R. Wormald, Glaucoma. Clin. Evid. 9 (2009). Online

    Google Scholar 

  33. R.E. Showalter, Degenerate evolution equations and applications. Indiana Univ. Math. J. 23(8), 655–677 (1974)

    Article  MathSciNet  Google Scholar 

  34. R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, in AMS. Mathematical Surveys and Monographs, vol. 49 (AMS, New York, 1996)

    Google Scholar 

  35. R.E. Showalter, Diffusion in poro-elastic media. JMAA 251, 310–340 (2000)

    MathSciNet  MATH  Google Scholar 

  36. A. Smillie, I. Sobey, Z. Molnar, A hydro-elastic model of hydrocephalus. J. Fluid Mech. 539, 417–443 (2005)

    Article  MathSciNet  Google Scholar 

  37. M.A. Soltz, G.A. Ateshian, Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31, 927–934 (1998)

    Article  Google Scholar 

  38. D.E. Stewart, Dynamics with Inequalities: Impacts and Hard Constraints (SIAM, New York, 2011)

    Book  Google Scholar 

  39. N. Su, R.E. Showalter, Partially saturated flow in a poroelastic medium. DCDS-B 1, 403–420 (2001)

    Article  MathSciNet  Google Scholar 

  40. J.-K. Suh, S. Bai, Finite element formulation of biphasic poroviscoelastic model for articular cartilage. J. Biomech. Eng. 120, 195–201 (1998)

    Article  Google Scholar 

  41. C.C. Swan, R.S. Lakes, R.A. Brand, K.J. Stewart, Micromechanically based poroelastic modeling of fluid flow in haversian bone. J. Biomech. Eng. 125, 25–37 (2003)

    Article  Google Scholar 

  42. K. Terzaghi, Principle of Soil Mechanics. Eng. News Record, A Series of Articles (1925)

    Google Scholar 

  43. F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods, and Applications, vol. 112 (AMS, Providence, 2010)

    Google Scholar 

  44. M. Verri, G. Guidoboni, L. Bociu, R. Sacco, The role of structural viscosity in deformable porous media with applications in biomechanics. Math. Biosci. Eng. 15(4), 933–959 (2018)

    Article  MathSciNet  Google Scholar 

  45. A. Zenisek, The existence and uniqueness theorem in Biot’s consolidation theory. Appl. Math. 29, 194–211 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were partially supported by L. Bociu’s NSF-DMS 1555062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Bociu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bociu, L., Strikwerda, S. (2022). Poro-Visco-Elasticity in Biomechanics: Optimal Control. In: Español, M.I., Lewicka, M., Scardia, L., Schlömerkemper, A. (eds) Research in Mathematics of Materials Science. Association for Women in Mathematics Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-04496-0_5

Download citation

Publish with us

Policies and ethics