Skip to main content

Microalgae and Macroalgae for Third-Generation Bioethanol Production

  • Chapter
  • First Online:
Liquid Biofuels: Bioethanol

Abstract

First-generation bioethanol, made from edible feedstocks, are currently not regarded as a sustainable source due to the food versus fuel dilemma. Second-generation bioethanol, despite being made from non-edible sources, are not cost-effective owing to their high production cost. To avoid the drawbacks of its predecessor, third-generation bioethanol from microalgae and macroalgae have been considered a promising replacement to depleting petroleum fuels. In this chapter, the progress of research on micro and macroalgae for third-generation bioethanol production is discussed. This chapter thoroughly explains the use of microalgae and macroalgae for bioethanol production, starting from strains selection, cultivation, harvesting and drying, to hydrolysis, fermentation and distillation. To become a competitive source for bioethanol, the production of microalgae should be cheap and highly efficient. Therefore, each of the above processes should be improved and optimised. At the end of this chapter, the future direction on bioethanol production from microalgae and macroalgae is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah B, SaFaS M, Shokravi Z et al (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sust Energ Rev 107:37–50

    Article  Google Scholar 

  • Abomohra AE-F, El-Sheekh M, Hanelt D (2017) Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock. Renew Energy 101:1266–1272

    Article  CAS  Google Scholar 

  • Adnan MA, Xiong Q, Muraza O et al (2020) Gasification of wet microalgae to produce H2-rich syngas and electricity: a thermodynamic study considering exergy analysis. Renew Energy 147:2195–2205

    Article  CAS  Google Scholar 

  • Ajayan K, Harilal C, Gani P (2019) Performance of reflector coated LED bio-box on the augmentation of growth and lipid production in aerophytic trebouxiophyceaen algae Coccomyxa sp. Algal Res 38:101401

    Article  Google Scholar 

  • Al-Lwayzy SH, Yusaf T (2017) Diesel engine performance and exhaust gas emissions using microalgae Chlorella protothecoides biodiesel. Renew Energy 101:690–701

    Article  CAS  Google Scholar 

  • Albarelli JQ, Santos DT, Ensinas AV et al (2018) Product diversification in the sugarcane biorefinery through algae growth and supercritical CO2 extraction: thermal and economic analysis. Renew Energy 129:776–785

    Article  CAS  Google Scholar 

  • Alfonsín V, Maceiras R, Gutiérrez C (2019) Bioethanol production from industrial algae waste. Waste Manag 87:791–797

    Article  PubMed  Google Scholar 

  • Ali M, Watson IA (2016) Microwave thermolysis and lipid recovery from dried microalgae powder for biodiesel production. Energ Technol 4:319–330

    Article  CAS  Google Scholar 

  • Andersen T, Andersen FØ (2006) Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake. Aquat Bot 84:267–271

    Article  CAS  Google Scholar 

  • Bak UG, Mols-Mortensen A, Gregersen O (2018) Production method and cost of commercial-scale offshore cultivation of kelp in the Faroe Islands using multiple partial harvesting. Algal Res 33:36–47

    Article  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M et al (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500

    Article  Google Scholar 

  • Bartley ML, Boeing WJ, Dungan BN et al (2014) pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis Salina and invading organisms. J Appl Phycol 26:1431–1437

    Article  CAS  Google Scholar 

  • Bhalamurugan GL, Valerie O, Mark L (2018) Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environmental Engineering Research 23:229–241

    Article  Google Scholar 

  • Bhattacharya M, Goswami S (2020) Microalgae–a green multi-product biorefinery for future industrial prospects. Biocatal Agric Biotechnol 25:101580

    Article  Google Scholar 

  • Bobin-Dubigeon C, Lahaye M, Barry JL (1997) Human colonic bacterial degradability of dietary fibres from sea-lettuce (Ulva sp). J Sci Food Agric 73:149–159

    Article  CAS  Google Scholar 

  • Bolognesi S, Bernardi G, Callegari A et al (2021) Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy. Biomass Conversion and Biorefinery 11:289–299

    Article  CAS  Google Scholar 

  • Bruhn A, Tørring DB, Thomsen M et al (2016) Impact of environmental conditions on biomass yield, quality, and bio-mitigation capacity of Saccharina latissima. Aquac Environ Interact 8:619–636

    Article  Google Scholar 

  • Brzychczyk B, Hebda T, Pedryc N (2020) The influence of artificial lighting systems on the cultivation of algae: the example of Chlorella vulgaris. Energies 13:5994

    Article  CAS  Google Scholar 

  • Buck BH, Buchholz CM (2005) Response of offshore cultivated Laminaria saccharina to hydrodynamic forcing in the North Sea. Aquaculture 250:674–691

    Article  Google Scholar 

  • Buschmann AH, Camus C, Infante J et al (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406

    Article  Google Scholar 

  • Castellote M, Fernandez L, Andrade C et al (2009) Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater Struct 42:515–525

    Article  CAS  Google Scholar 

  • Chades T, Scully SM, Ingvadottir EM et al (2018) Fermentation of mannitol extracts from brown macro algae by thermophilic clostridia. Front Microbiol 9:1931

    Article  PubMed  PubMed Central  Google Scholar 

  • Charrier B, Abreu MH, Araujo R et al (2017) Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytol 216:967–975

    Article  PubMed  Google Scholar 

  • Cheah WY, Ling TC, Show PL et al (2016) Cultivation in wastewaters for energy: a microalgae platform. Appl Energy 179:609–625

    Article  CAS  Google Scholar 

  • Chen H, Zhou D, Luo G et al (2015) Macroalgae for biofuels production: progress and perspectives. Renew Sust Energ Rev 47:427–437

    Article  CAS  Google Scholar 

  • Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24:889–897

    Article  CAS  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336

    Article  CAS  PubMed  Google Scholar 

  • Collotta M, Champagne P, Mabee W et al (2018) Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res 29:12–21

    Article  Google Scholar 

  • Cripwell RA, Favaro L, Viljoen-Bloom M et al (2020) Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: achievements and challenges. Biotechnol Adv 42:107579

    Article  CAS  PubMed  Google Scholar 

  • De Farias Silva CE, Barbera E, Bertucco A (2019) Biorefinery as a promising approach to promote ethanol industry from microalgae and cyanobacteria. Bioethanol production from food crops. Elsevier, pp 343–359

    Google Scholar 

  • Deprá MC, Mérida LG, De Menezes CR et al (2019) A new hybrid photobioreactor design for microalgae culture. Chem Eng Res Des 144:1–10

    Article  Google Scholar 

  • Devi A, Singh A, Bajar S et al (2021) Ethanol from lignocellulosic biomass: an in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J Environ Chem Eng 105798

    Google Scholar 

  • El-Mekkawi SA, Abdo SM, Samhan FA et al (2019) Optimization of some fermentation conditions for bioethanol production from microalgae using response surface method. Bulletin of the National Research Centre 43:1–8

    Article  Google Scholar 

  • El Harchi M, Fakihi Kachkach FZ, El Mtili N (2018) Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. S Afr J Bot 115:161–169

    Article  Google Scholar 

  • Erbland P, Caron S, Peterson M et al (2020) Design and performance of a low-cost, automated, large-scale photobioreactor for microalgae production. Aquac Eng 90:102103

    Article  Google Scholar 

  • Fakihi Kachkach F, El Harchi M, El Mtili N (2014) In vitro effect of Ulva rigida extract on the growth of Lepidium sativum and Allium cepa. Maroccan Journal of Biology 11:26–31

    Google Scholar 

  • Fei X (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Asian Pacific phycology in the 21st century: prospects and challenges. Springer, pp 145–151

    Google Scholar 

  • Fernand F, Israel A, Skjermo J et al (2017) Offshore macroalgae biomass for bioenergy production: environmental aspects, technological achievements and challenges. Renew Sust Energ Rev 75:35–45

    Article  CAS  Google Scholar 

  • Ferreira AF, Dias APS, Silva CM et al (2016) Effect of low frequency ultrasound on microalgae solvent extraction: analysis of products, energy consumption and emissions. Algal Res 14:9–16

    Article  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F et al (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  PubMed  Google Scholar 

  • Golberg A, Vitkin E, Linshiz G et al (2014) Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion technology, and sustainability implications for developing economies. Biofuels Bioprod Biorefin 8:67–82

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  Google Scholar 

  • Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Hamouda RA, Sherif SA, Ghareeb MM (2018) Bioethanol production by various hydrolysis and fermentation processes with micro and macro green algae. Waste and Biomass Valorization 9:1495–1501

    Article  CAS  Google Scholar 

  • HandÃ¥ A, Forbord S, Wang X et al (2013) Seasonal-and depth-dependent growth of cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) aquaculture in Norway. Aquaculture 414:191–201

    Article  Google Scholar 

  • Hanifzadeh M, Garcia EC, Viamajala S (2018a) Production of lipid and carbohydrate from microalgae without compromising biomass productivities: role of ca and mg. Renew Energy 127:989–997

    Article  CAS  Google Scholar 

  • Hanifzadeh M, Sarrafzadeh M-H, Nabati Z et al (2018b) Technical, economic and energy assessment of an alternative strategy for mass production of biomass and lipid from microalgae. J Environ Chem Eng 6:866–873

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    Article  CAS  Google Scholar 

  • Hasin M, Gohain M, Deka D (2021) Bio-ethanol production from carbohydrate-rich microalgal biomass: Scenedesmus obliquus. Singapore, Springer Singapore

    Google Scholar 

  • Hassanpour M, Abbasabadi M, Ebrahimi S et al (2015) Gravimetric enrichment of high lipid and starch accumulating microalgae. Bioresour Technol 196:17–21

    Article  CAS  PubMed  Google Scholar 

  • He P, Mao B, Shen C et al (2013) Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresour Technol 129:177–181

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Garibay E, Zertuche-González JA, Pacheco-Ruíz I (2011) Isolation and chemical characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh. J Appl Phycol 23:537–542

    Article  Google Scholar 

  • Hernández D, Riaño B, Coca M et al (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Article  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y et al (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Nagarajan D, Ren N-Q et al (2018) Waste biorefineries—integrating anaerobic digestion and microalgae cultivation for bioenergy production. Curr Opin Biotechnol 50:101–110

    Article  PubMed  Google Scholar 

  • Hong Y, Chen W, Luo X et al (2017) Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production. Bioresour Technol 237:47–56

    Article  CAS  PubMed  Google Scholar 

  • Ismail MM, Ismail GA, El-Sheekh MM (2020) Potential assessment of some micro-and macroalgal species for bioethanol and biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: 1–17

    Google Scholar 

  • Jensen A Present and future needs for algae and algal products. Fourteenth international seaweed symposium, 1993. Springer

    Google Scholar 

  • Jin D, Kotar J, Silvester E et al (2020) Diurnal variations in the motility of populations of biflagellate microalgae. Biophys J 119:2055–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John RP, Anisha G, Nampoothiri KM et al (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Jung J-H, Sirisuk P, Ra CH et al (2019) Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem 77:93–99

    Article  CAS  Google Scholar 

  • Katijan A, Latif MFA, Zahmani QF et al (2019) An experimental study for emission of four stroke carbureted and fuel injection motorcycle engine. J Adv Res Fluid Mechanic Thermal Sci 62:256–264

    Google Scholar 

  • Kawai S, Murata K (2016) Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. Int J Mol Sci 17

    Google Scholar 

  • Khambhaty Y, Upadhyay D, Kriplani Y et al (2013) Bioethanol from macroalgal biomass: utilization of marine yeast for production of the same. Bioenergy Res 6:188–195

    Article  CAS  Google Scholar 

  • Kothari R, Ahmad S, Pathak VV et al (2019) Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass Conversion and Biorefinery:1–24

    Google Scholar 

  • Kraan S (2016) Seaweed and alcohol: biofuel or booze? Seaweed in health and disease prevention. Elsevier:169–184

    Google Scholar 

  • Kumar AN, Chatterjee S, Hemalatha M et al (2020a) Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour Technol 296:122315

    Article  Google Scholar 

  • Kumar R, Ghosh AK, Pal P (2020b) Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: a review of membrane-integrated green approach. Sci Total Environ 698:134169

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dheeran P, Singh SP et al (2015) Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse. Renew Energy 83:850–858

    Article  CAS  Google Scholar 

  • Kumar S, Gupta R, Kumar G et al (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Article  CAS  PubMed  Google Scholar 

  • Lee XJ, Ong HC, Gan YY et al (2020) State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers Manag 210:112707

    Article  CAS  Google Scholar 

  • Li L, Ge Y, Xiao M (2021) Towards biofuel generation III+: a sustainable industrial symbiosis design of co-producing algal and cellulosic biofuels. J Clean Prod 306:127144

    Article  CAS  Google Scholar 

  • Loulergue P, Balannec B, Fouchard-Le Graët L et al (2019) Air-gap membrane distillation for the separation of bioethanol from algal-based fermentation broth. Sep Purif Technol 213:255–263

    Article  CAS  Google Scholar 

  • Malcata FX, Pinto IS, Guedes AC (2018) Marine macro-and microalgae: an overview. CRC Press

    Book  Google Scholar 

  • Malode SJ, Prabhu KK, Mascarenhas RJ et al (2021) Recent advances and viability in biofuel production. Energy Conversion and Management: X 10:100070

    Article  CAS  Google Scholar 

  • Mankar AR, Pandey A, Modak A et al (2021) Pre-treatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol 125235

    Google Scholar 

  • Marinho GS, Holdt SL, Angelidaki I (2015) Seasonal variations in the amino acid profile and protein nutritional value of Saccharina latissima cultivated in a commercial IMTA system. J Appl Phycol 27:1991–2000

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renewable and Eustainable Energy Reviews 14:217–232

    Article  CAS  Google Scholar 

  • Mcneary WW, Erickson LE (2013) Sustainable management of algae in eutrophic ecosystems. J Environ Prot 4:9

    Article  Google Scholar 

  • Milledge JJ, Smith B, Dyer PW et al (2014) Macroalgae-derived biofuel: a review of methods of energy exxtraction from seaweed biomass. Energies 7

    Google Scholar 

  • Mohammed AT, Jaafar MNM, Othman N et al (2021) Soil fertility enrichment potential of Jatropha curcas for sustainable agricultural production: a case study of Birnin Kebbi, Nigeria. Annals of the Romanian Society for Cell Biology:21061–21073

    Google Scholar 

  • Mohan SV, Hemalatha M, Chakraborty D et al (2020) Algal biorefinery models with self-sustainable closed loop approach: trends and prospective for blue-bioeconomy. Bioresour Technol 295:122128

    Article  Google Scholar 

  • Möllers KB, Cannella D, Jørgensen H et al (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Mols-Mortensen A, Jacobsen C, Holdt SL (2017) Variation in growth, yield and protein concentration in Saccharina latissima (Laminariales, Phaeophyceae) cultivated with different wave and current exposures in the Faroe Islands. J Appl Phycol 29:2277–2286

    Article  CAS  Google Scholar 

  • Mooij PR, Stouten GR, Tamis J et al (2013) Survival of the fattest. Energy Environ Sci 6:3404–3406

    Article  Google Scholar 

  • Morales-Sánchez D, Martinez-Rodriguez OA, Martinez A (2017) Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. J Chem Technol Biotechnol 92:925–936

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Ngamsirisomsakul M, Reungsang A, Liao Q et al (2019) Enhanced bio-ethanol production from chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis. Renew Energy 141:482–492

    Article  CAS  Google Scholar 

  • Nhat PVH, Ngo H, Guo W et al (2018) Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? Bioresour Technol 256:491–501

    Article  Google Scholar 

  • Nisizawa K, Noda H, Kikuchi R et al (1987) The main seaweed foods in Japan. Hydrobiologia 151:5–29

    Article  Google Scholar 

  • Ogbonda KH, Aminigo RE, Abu GO (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative spirulina sp. Bioresour Technol 98:2207–2211

    Article  CAS  PubMed  Google Scholar 

  • Onay M (2019) Bioethanol production via different saccharification strategies from H. tetrachotoma ME03 grown at various concentrations of municipal wastewater in a flat-photobioreactor. Fuel 239:1315–1323

    Article  CAS  Google Scholar 

  • Onumaegbu C, Mooney J, Alaswad A et al (2018) Pre-treatment methods for production of biofuel from microalgae biomass. Renew Sust Energ Rev 93:16–26

    Article  CAS  Google Scholar 

  • Özçimen D, Koçer AT, Ä°nan B et al (2020a) Bioethanol production from microalgae. Handbook of microalgae-based processes and products. Elsevier, pp 373–389

    Book  Google Scholar 

  • Özçimen D, Koçer AT, Ä°nan B et al (2020b) Chapter 14 - Bioethanol production from microalgae. In: JACOB-LOPES E, MARONEZE MM, QUEIROZ MI, ZEPKA LQ (eds) Handbook of Microalgae-Based Processes and Products. Academic, pp 373–389

    Chapter  Google Scholar 

  • Pandey A, Srivastava S, Kumar S (2020) Development and cost-benefit analysis of a novel process for biofuel production from microalgae using pre-treated high-strength fresh cheese whey wastewater. Environ Sci Pollut Res 27:23963–23980

    Article  CAS  Google Scholar 

  • Patel AK, Choi YY, Sim SJ (2020) Emerging prospects of mixotrophic microalgae: way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresour Technol 300:122741

    Article  CAS  PubMed  Google Scholar 

  • Pereira H, Gangadhar KN, Schulze PS et al (2016) Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci Rep 6:1–11

    Article  Google Scholar 

  • Peteiro C, Freire Ó (2009) Effect of outplanting time on commercial cultivation of kelp Laminaria saccharina at the southern limit in the Atlantic coast, NW Spain. Chin J Oceanol Limnol 27:54

    Article  Google Scholar 

  • Postma P, Miron T, Olivieri G et al (2015) Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour Technol 184:297–304

    Article  CAS  PubMed  Google Scholar 

  • Prajapati SK, Bhattacharya A, Malik A et al (2015) Pretreatment of algal biomass using fungal crude enzymes. Algal Res 8:8–14

    Article  Google Scholar 

  • Prasad S, Kumar S, Sheetal K et al (2020) Global climate change and biofuels policy: Indian perspectives. Global Climate Change and Environmental Policy. Springer, pp 207–226

    Book  Google Scholar 

  • Prasad S, Venkatramanan V, Kumar S et al (2019) Biofuels: a clean technology for environment management. Sustainable green technologies for environmental management. Springer, pp 219–240

    Google Scholar 

  • Rajak RC, Banerjee R (2020) An innovative approach of mixed enzymatic venture for 2G ethanol production from lignocellulosic feedstock. Energy Convers Manag 207:112504

    Article  CAS  Google Scholar 

  • Ramachandra T, Madhab MD, Shilpi S et al (2013) Algal biofuel from urban wastewater in India: scope and challenges. Renew Sust Energ Rev 21:767–777

    Article  CAS  Google Scholar 

  • Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sust Energ Rev 80:765–773

    Article  Google Scholar 

  • Rammuni MN, Ariyadasa TU, Nimarshana PHV et al (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem 277:128–134

    Article  CAS  PubMed  Google Scholar 

  • Ras M, Steyer J-P, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12:153–164

    Article  CAS  Google Scholar 

  • Rizza LS, Smachetti MES, Do Nascimento M et al (2017) Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Res 22:140–147

    Article  Google Scholar 

  • Roslan MF, Veza I, Said MFM (2020) Predictive simulation of single cylinder n-butanol HCCI engine. IOP Conference Series: Materials Science and Engineering, 2020. IOP Publishing

    Google Scholar 

  • Rusli M, Said MFM, Sulaiman A et al. (2021) Performance and emission measurement of a single cylinder diesel engine fueled with palm oil biodiesel fuel blends. IOP Conference Series: Materials Science and Engineering, 2021. IOP Publishing

    Google Scholar 

  • Saad MG, Dosoky NS, Zoromba MS et al. (2019) Algal biofuels: current status and key challenges. Energies 12

    Google Scholar 

  • Sankaran R, RaP C, Pakalapati H et al (2020) Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol 298:122476

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schulze PS, Guerra R, Pereira H et al (2017) Flashing LEDs for microalgal production. Trends Biotechnol 35:1088–1101

    Article  CAS  PubMed  Google Scholar 

  • Sforza E, Pastore M, Spagni A et al (2018) Microalgae-bacteria gas exchange in wastewater: how mixotrophy may reduce the oxygen supply for bacteria. Environ Sci Pollut Res 25:28004–28014

    Article  CAS  Google Scholar 

  • Shahid MK, Batool A, Kashif A et al (2021) Biofuels and biorefineries: development, application and future perspectives emphasizing the environmental and economic aspects. J Environ Manag 297:113268

    Article  CAS  Google Scholar 

  • Sharma B, Larroche C, Dussap C-G (2020) Comprehensive assessment of 2G bioethanol production. Bioresour Technol 313:123630

    Article  CAS  PubMed  Google Scholar 

  • Shokrkar H, Ebrahimi S, Zamani M (2017) Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel 200:380–386

    Article  CAS  Google Scholar 

  • Shokrkar H, Ebrahimi S, Zamani M (2018) Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis. Fuel 228:30–38

    Article  CAS  Google Scholar 

  • Sudhakar K, Mamat R, Samykano M et al (2018) An overview of marine macroalgae as bioresource. Renew Sust Energ Rev 91:165–179

    Article  Google Scholar 

  • Sudhakar M, Viswanaathan S (2019) Algae as a sustainable and renewable bioresource for biofuel production. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, p 77–84

    Google Scholar 

  • Sudhakar MP, Jegatheesan A, Poonam C et al (2017) Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renew Energy 105:133–139

    Article  CAS  Google Scholar 

  • Sulaiman O, Magee A, Bahrain Z et al (2013) Mooring analysis for very large offshore aquaculture ocean plantation floating structure. Ocean & Coastal Management 80:80–88

    Article  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Tandon P, Jin Q (2017) Microalgae culture enhancement through key microbial approaches. Renew Sust Energ Rev 80:1089–1099

    Article  CAS  Google Scholar 

  • Teichberg M, Fox SE, Olsen YS et al (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob Chang Biol 16:2624–2637

    Article  PubMed Central  Google Scholar 

  • Titlyanov E, Titlyanova T (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36:227–242

    Article  Google Scholar 

  • Troell M, Rönnbäck P, Halling C et al. Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. Sixteenth International Seaweed Symposium, 1999. Springer

    Google Scholar 

  • Tsuji A, Tominaga K, Nishiyama N et al (2013) Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the sea hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase. PLoS One 8:e65418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Den Burg SW, Van Duijn AP, Bartelings H et al (2016) The economic feasibility of seaweed production in the North Sea. Aquaculture Economics & Management 20:235–252

    Article  Google Scholar 

  • Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM et al. (2018) Microalgal biomass pretreatment for bioethanol production: a review

    Google Scholar 

  • Veza I, Muhammad V, Oktavian R et al (2021a) Effect of COVID-19 on biodiesel industry: a case study in Indonesia and Malaysia. Int J Automotive Mech Eng 18:8637–8646

    Article  CAS  Google Scholar 

  • Veza I, Roslan MF, Said MFM et al. Potential of range extender electric vehicles (REEVS). IOP Conference Series: Materials Science and Engineering, 2020a. IOP Publishing

    Google Scholar 

  • Veza I, Roslan MF, Said MFM et al. (2020b) Cetane index prediction of ABE-diesel blends using empirical and artificial neural network models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: 1–18

    Google Scholar 

  • Veza I, Roslan MF, Said MFM et al (2021b) Physico-chemical properties of acetone-butanol-ethanol (ABE)-diesel blends: blending strategies and mathematical correlations. Fuel 286:119467

    Article  CAS  Google Scholar 

  • Veza I, Said MFM, Latiff ZA (2019a) Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: a review. Fuel Process Technol 196:106179

    Article  CAS  Google Scholar 

  • Veza I, Said MFM, Latiff ZA (2020c) Improved performance, combustion and emissions of SI engine fuelled with butanol: a review. Int J Automotive Mech Eng 17:7648–7666

    Article  CAS  Google Scholar 

  • Veza I, Said MFM, Latiff ZA (2021c) Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass Bioenergy 144:105919

    Article  CAS  Google Scholar 

  • Veza I, Said MFM, Latiff ZA et al (2021d) Application of Elman and Cascade neural network (ENN and CNN) in comparison with adaptive neuro fuzzy inference system (ANFIS) to predict key fuel properties of ABE-diesel blends. Int J Green Energy:1–13

    Google Scholar 

  • Veza I, Said MFM, Latiff ZA et al. Simulation of predictive kinetic combustion of single cylinder HCCI engine. AIP Conference Proceedings, 2019b Pahang, Malaysia. AIP Publishing

    Google Scholar 

  • Vonshak A, Tomaselli L (2002) Arthrospira (spirulina): systematics and EcophysioIogy. In: WHITTON BA, POTTS M (eds) The ecology of cyanobacteria: their diversity in time and space. Springer Netherlands, Dordrecht, pp 505–522

    Chapter  Google Scholar 

  • Wargacki AJ, Leonard E, Win MN et al (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  CAS  PubMed  Google Scholar 

  • Wishkerman A, Wishkerman E (2017) Application note: a novel low-cost open-source LED system for microalgae cultivation. Comput Electron Agric 132:56–62

    Article  Google Scholar 

  • Xu X, Kim JY, Oh YR et al (2014) Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. Bioresour Technol 169:455–461

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Kuang Y, Gui X et al (2019) Engineering a malic enzyme to enhance lipid accumulation in Chlorella protothecoides and direct production of biodiesel from the microalgal biomass. Biomass Bioenergy 122:298–304

    Article  CAS  Google Scholar 

  • Yan Z-J, Liu J, Qian L et al (2020) Development and validation of a photobioreactor for uniform distribution of light intensity along the optical path based on numerical simulation. Environ Sci Pollut Res 27:42230–42241

    Article  CAS  Google Scholar 

  • Yanagisawa M, Nakamura K, Ariga O et al (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem 46:2111–2116

    Article  CAS  Google Scholar 

  • Yang C, Liu W, He Z et al (2015) Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1: acceleration on waste activated sludge hydrolysis and acidification. Bioresour Technol 175:509–516

    Article  CAS  PubMed  Google Scholar 

  • Yazdani P, Zamani A, Karimi K et al (2015) Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresour Technol 176:196–202

    Article  CAS  PubMed  Google Scholar 

  • Yuan T, Li X, Xiao S et al (2016) Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency. Bioresour Technol 220:530–536

    Article  CAS  PubMed  Google Scholar 

  • Zabed HM, Akter S, Yun J et al (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sust Energ Rev 105:105–128

    Article  CAS  Google Scholar 

  • Zhang J, Fang J, Wang W et al (2012) Growth and loss of mariculture kelp Saccharina japonica in Sungo Bay, China. J Appl Phycol 24:1209–1216

    Article  CAS  Google Scholar 

  • Zhen S, Bugbee B (2020) Far-red photons have equivalent efficiency to traditional photosynthetic photons: implications for redefining photosynthetically active radiation. Plant Cell Environ 43:1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Li Q, Hu A et al (2013) Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch-Stärke 65:621–627

    Article  CAS  Google Scholar 

  • Zhou Y, Chen Y, Li M et al (2020) Production of high-quality biofuel via ethanol liquefaction of pretreated natural microalgae. Renew Energy 147:293–301

    Article  CAS  Google Scholar 

  • Zuniga-Jara S, Marín-Riffo MC, Bulboa-Contador C (2016) Bioeconomic analysis of giant kelp Macrocystis pyrifera cultivation (Laminariales; Phaeophyceae) in northern Chile. J Appl Phycol 28:405–416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noreffendy Tamaldin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veza, I. et al. (2022). Microalgae and Macroalgae for Third-Generation Bioethanol Production. In: Soccol, C.R., Amarante Guimarães Pereira, G., Dussap, CG., Porto de Souza Vandenberghe, L. (eds) Liquid Biofuels: Bioethanol. Biofuel and Biorefinery Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-01241-9_14

Download citation

Publish with us

Policies and ethics