Skip to main content

Feedstocks and Pre-Treatment Techniques for Third-Generation Bioethanol Production

  • Chapter
  • First Online:
Liquid Biofuels: Bioethanol

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 12))

  • 588 Accesses

Abstract

Biofuels are introduced as an effective replacement for conventional fuels to reduce the environmental impacts and to meet the growing demand for energy, raised nowadays because of the growing population and industrialization. Due to running shortage and various economical and environmental drawbacks of conventional carbon-based fuels, biofuels are developed. Among biofuels, bioethanol is a demanding biofuel that could be an effective fuel and could be used in conventional engines of automobiles in combination with gasoline without any alterations. Depending upon the use of feedstock used to produce bioethanol, 1G, 2G, 3G, and most recent 4G bioethanol came into light. In this chapter, the focus is on 3G bioethanol produced from macroalgae and microalgae. 3G bioethanol has been developed to overcome the limitations associated with 1G and 2G bioethanol. 3G bioethanol is a recent emerging technique that is still in its development phase, while the previous research shows that it is a promising way to cope with several environmental issues related to foregoing generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abomohra AE-F, Elshobary M (2019) Biodiesel, bioethanol, and biobutanol production from microalgae. Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, 293–321

    Google Scholar 

  • Adams JM, Gallagher JA, Donnison IS (2008) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569. https://doi.org/10.1007/s10811-008-9384-7

    Article  CAS  Google Scholar 

  • Aizawa M, Asaoka K, Atsumi M, Sakou T (2007) Seaweed bioethanol production in Japan-The Ocean sunrise project. Oceans 2007:1–5

    Google Scholar 

  • Alfonsín V, Maceiras R, Gutiérrez C (2019) Bioethanol production from industrial algae waste. Waste Manag 87:791–797

    Article  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  CAS  Google Scholar 

  • Barsanti L, Gualtieri P (2005) Algae: anatomy, biochemistry, and biotechnology. CRC press

    Book  Google Scholar 

  • Bibi R, Ahmad Z, Imran M, Hussain S, Ditta A, Mahmood S, Khalid A (2017) Algal bioethanol production technology: a trend towards sustainable development. Renew Sust Energ Rev 71:976–985

    Article  CAS  Google Scholar 

  • Brar KK, Chadha BS, Brar SK, Singh P (2020) Biotechnological strategies for enhanced production of biofuels from lignocellulosic biomass. In: Valorization of biomass to value-added commodities. Springer, pp 521–551

    Chapter  Google Scholar 

  • Chen Z, Wang L, Qiu S, Ge S (2018) Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International 2018

    Google Scholar 

  • Chng LM, Lee KT, Chan DJC (2017) Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production. Energy Convers Manag 141:410–419

    Article  CAS  Google Scholar 

  • Choi J-A, Hwang J-H, Dempsey BA, Abou-Shanab RA, Min B, Song H, Lee DS, Kim JR, Cho Y, Hong S (2011) Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy Environ Sci 4(9):3513–3520

    Article  CAS  Google Scholar 

  • Choi WY, Han JG, Lee CG, Song CH, Kim JS, Seo YC, Lee SE, Jung KH, Kang DH, Heo SJ (2012) Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chem Biochem Eng Q 26(1):15–21

    CAS  Google Scholar 

  • da Maia JL, Cardoso JS, da Silveira Mastrantonio DJ, Bierhals CK, Moreira JB, Costa JAV, de Morais MG (2020) Microalgae starch: a promising raw material for the bioethanol production. Int J Biol Macromol

    Google Scholar 

  • Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381

    Article  Google Scholar 

  • Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R (2019) A critical review on production of bioethanol from macroalgal biomass. Algal Res 42:101606

    Article  Google Scholar 

  • Deschamps P, Haferkamp I, d’Hulst C, Neuhaus HE, Ball SG (2008) The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci 13(11):574–582. https://doi.org/10.1016/j.tplants.2008.08.009

    Article  CAS  Google Scholar 

  • Dudley B (2018) BP statistical review of world energy. BP Statistical Review, London, UK

    Google Scholar 

  • El-Mekkawi SA, Abdo SM, Samhan FA, Ali GH (2019) Optimization of some fermentation conditions for bioethanol production from microalgae using response surface method. Bulletin of the National Research Centre 43(1):1–8

    Article  Google Scholar 

  • El-Sayed WMM, Ibrahim HAH, Abdul-Raouf UM, El-Nagar MM (2016) Evaluation of bioethanol production from Ulva lactuca by Saccharomyces cerevisiae. J Biotechnol Biomater 6(226):2

    Google Scholar 

  • Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sust Energ Rev 54:473–481

    Article  CAS  Google Scholar 

  • Halim R, Harun R, Webley PA, Danquah MK (2013) Bioprocess engineering aspects of biodiesel and bioethanol production from microalgae. In: Advanced Biofuels and Bioproducts. Springer, pp 601–628

    Chapter  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46(1):304–309

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203

    Article  CAS  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88(10):3464–3467

    Article  CAS  Google Scholar 

  • Harun R, Yip JW, Thiruvenkadam S, Ghani WA, Cherrington T, Danquah MK (2014) Algal biomass conversion to bioethanol–a step-by-step assessment. Biotechnol J 9(1):73–86

    Article  CAS  Google Scholar 

  • Heshof R, Visscher B, van de Zilver E, van de Vondervoort R, van Keulen F, Delahaije RJ, Wind RD (2020) Production of tailor-made enzymes to facilitate lipid extraction from the oleaginous yeast Schwanniomyces occidentalis. AMB Express 10(1):1–11

    Article  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  Google Scholar 

  • Hoek C, Mann D, Jahns HM, Jahns M (1995) Algae: an introduction to phycology. Cambridge University Press

    Google Scholar 

  • Hong Y, Chen C, Wu Y-R (2020) Biobutanol production from sulfuric acid-pretreated red algal biomass by a newly isolated clostridium sp. Strain WK. Biotechnology and Applied Biochemistry 67(5):738–743

    Article  CAS  Google Scholar 

  • Hossain N, Zaini J, Mahlia TMI (2019) Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country. Renew Sust Energ Rev 115:109371

    Article  CAS  Google Scholar 

  • Ismail MM, Ismail GA, El-Sheekh MM (2020) Potential assessment of some micro-and macroalgal species for bioethanol and biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–17

    Google Scholar 

  • Jiang P, Qin S, Tseng CK (2003) Expression of the lacZ reporter gene in sporophytes of the seaweed Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Rep 21(12):1211–1216. https://doi.org/10.1007/s00299-003-0645-2

    Article  CAS  Google Scholar 

  • Jiang R, Ingle KN, Golberg A (2016) Macroalgae (seaweed) for liquid transportation biofuel production: what is next? Algal Res 14:48–57

    Article  Google Scholar 

  • Katiyar R, Arora A (2020) Health promoting functional lipids from microalgae pool: a review. Algal Res 46:101800

    Article  Google Scholar 

  • Khammee P, Ramaraj R, Whangchai N, Bhuyar P, Unpaprom Y (2021) The immobilization of yeast for fermentation of macroalgae Rhizoclonium sp. for efficient conversion into bioethanol. Biomass Conversion and Biorefinery 11:827–835

    Article  CAS  Google Scholar 

  • Khanal SK, Grewell D, Sung S, Van Leeuwen J (2007) Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol 37(4):277–313

    Article  CAS  Google Scholar 

  • Khoo CG, Dasan YK, Lam MK, Lee KT (2019) Algae biorefinery: review on a broad spectrum of downstream processes and products. Bioresour Technol 292:121964

    Article  CAS  Google Scholar 

  • Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102(16):7466–7469. https://doi.org/10.1016/j.biortech.2011.04.071

    Article  CAS  Google Scholar 

  • Koyande AK, Show P-L, Guo R, Tang B, Ogino C, Chang J-S (2019) Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered 10(1):574–592

    Article  CAS  PubMed Central  Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18(1):27–46

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by agrobacterium tumefaciens. Plant Sci 166(3):731–738. https://doi.org/10.1016/j.plantsci.2003.11.012

    Article  CAS  Google Scholar 

  • Kwon O-M, Kim D-H, Kim S-K, Jeong G-T (2016) Production of sugars from macro-algae Gracilaria verrucosa using combined process of citric acid-catalyzed pretreatment and enzymatic hydrolysis. Algal Res 13:293–297

    Article  Google Scholar 

  • Lakatos GE, Ranglová K, Manoel JC, Grivalskỳ T, Kopeckỳ J, Masojídek J (2019) Bioethanol production from microalgae polysaccharides. Folia Microbiol 64(5):627–644

    Article  CAS  Google Scholar 

  • Laurens LM, Markham J, Templeton DW, Christensen ED, Van Wychen S, Vadelius EW, Chen-Glasser M, Dong T, Davis R, Pienkos PT (2017) Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy Environ Sci 10(8):1716–1738

    Article  CAS  Google Scholar 

  • Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014

    Google Scholar 

  • Lee H-J, Kim S-J, Yoon J-J, Kim KH, Seo J-H, Park Y-C (2015) Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. Bioresour Technol 191:445–451

    Article  CAS  Google Scholar 

  • Lee OK, Lee EY (2016) Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenergy 92:70–75. https://doi.org/10.1016/j.biombioe.2016.03.038

    Article  CAS  Google Scholar 

  • Lee S, Oh Y, Kim D, Kwon D, Lee C, Lee J (2011) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl Biochem Biotechnol 164(6):878–888

    Article  CAS  Google Scholar 

  • Maceiras R, Alfonsín V, Seguí L, González JF (2021) Microwave assisted alkaline pretreatment of algae waste in the production of cellulosic bioethanol. Energies 14(18):5891

    Article  CAS  Google Scholar 

  • Mahendran J, Saravanan K, Ragulnath D (2020) Performance and emission characteristics of algae derived biodiesel processes. Materials Today: Proceedings 21:268–271

    CAS  Google Scholar 

  • Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Gonzalez A, Ballesteros M (2012) Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Conversion and Biorefinery 2(2):123–132

    Article  CAS  Google Scholar 

  • Martín-Sampedro R, Eugenio ME, García JC, Lopez F, Villar JC, Diaz MJ (2012) Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass Bioenergy 42:97–106

    Article  Google Scholar 

  • Mushlihah S, Husain DR, Langford A, Tassakka ACMA (2020) Fungal pretreatment as a sustainable and low cost option for bioethanol production from marine algae. J Clean Prod 265:121763

    Article  Google Scholar 

  • Nematian T, Salehi Z, Shakeri A (2020) Conversion of bio-oil extracted from Chlorella vulgaris micro algae to biodiesel via modified superparamagnetic nano-biocatalyst. Renew Energy 146:1796–1804

    Article  CAS  Google Scholar 

  • Ngamsirisomsakul M, Reungsang A, Liao Q, Kongkeitkajorn MB (2019) Enhanced bio-ethanol production from chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis. Renew Energy 141:482–492. https://doi.org/10.1016/j.renene.2019.04.008

    Article  CAS  Google Scholar 

  • Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J (2021) Recent advances in the valorization of plant biomass. Biotechnol Biofuels 14(1):1–22

    Article  Google Scholar 

  • Ocreto JB, Chen W-H, Ubando AT, Park Y-K, Sharma AK, Ashokkumar V, Ok YS, Kwon EE, Rollon AP, De Luna MDG (2021) A critical review on second-and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment. Renew Sust Energ Rev 152:111679

    Article  CAS  Google Scholar 

  • Okuda K, Oka K, Onda A, Kajiyoshi K, Hiraoka M, Yanagisawa K (2008) Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 83(6):836–841

    Article  CAS  Google Scholar 

  • Onay M (2018) Bioethanol production from Nannochloropsis gaditana in municipal wastewater. Energy Procedia 153:253–257

    Article  CAS  Google Scholar 

  • Onay M (2019) Bioethanol production via different saccharification strategies from H. tetrachotoma ME03 grown at various concentrations of municipal wastewater in a flat-photobioreactor. Fuel 239:1315–1323. https://doi.org/10.1016/j.fuel.2018.11.126

    Article  CAS  Google Scholar 

  • Park J-H, Hong J-Y, Jang HC, Oh SG, Kim S-H, Yoon J-J, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88

    Article  CAS  Google Scholar 

  • Pugliese A, Biondi L, Bartocci P, Fantozzi F (2020) Selenastrum capricornutum a new strain of algae for biodiesel production. Fermentation 6(2):46

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501. https://doi.org/10.1128/EC.00364-09

    Article  CAS  PubMed Central  Google Scholar 

  • Ramachandra TV, Hebbale D (2020) Bioethanol from macroalgae: prospects and challenges. Renew Sust Energ Rev 117:109479

    Article  CAS  Google Scholar 

  • Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010). Macroalgae as a biomass feedstock: a preliminary analysis. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    Google Scholar 

  • Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: a technical appraisal and economic feasibility evaluation. Biomass Bioenergy 35(9):3865–3876

    Article  CAS  Google Scholar 

  • Sara M, Rouissi T, Brar SK, Blais JF (2016) Life cycle analysis of potential substrates of sustainable biorefinery. In: Platform chemical biorefinery. Elsevier, pp 55–76

    Chapter  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB (2013) Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol–comparison of five pretreatment technologies. Bioresour Technol 140:36–42

    Article  CAS  Google Scholar 

  • Shokrkar H, Ebrahimi S, Zamani M (2017) Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel 200:380–386. https://doi.org/10.1016/j.fuel.2017.03.090

    Article  CAS  Google Scholar 

  • Shokrkar H, Ebrahimi S, Zamani M (2018) Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis. Fuel 228:30–38

    Article  CAS  Google Scholar 

  • Shukla R, Kumar M, Chakraborty S, Gupta R, Kumar S, Sahoo D, Kuhad RC (2016) Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresour Technol 220:584–589

    Article  CAS  Google Scholar 

  • Singh K, Kaloni D, Gaur S, Kushwaha S, Mathur G (2017) Current research and perspectives on microalgae-derived biodiesel. Biofuels

    Google Scholar 

  • Sommer W (2015) Modelling and monitoring of aquifer thermal energy storage: impacts of heterogeneity, thermal interference and bioremediation. Modelling and Monitoring of Aquifer Thermal Energy Storage: Impacts of Heterogeneity, Thermal Interference and Bioremediation. https://www.cabdirect.org/cabdirect/abstract/20153237389

  • Spiden EM, Scales PJ, Yap BHJ, Kentish SE, Hill DRA, Martin GJO (2015) The effects of acidic and thermal pretreatment on the mechanical rupture of two industrially relevant microalgae: chlorella sp. and Navicula sp. Algal Res 7:5–10. https://doi.org/10.1016/j.algal.2014.11.006

    Article  Google Scholar 

  • Sukwong P, Ra CH, Sunwoo IY, Tantratian S, Jeong G-T, Kim S-K (2018) Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose. Bioprocess Biosyst Eng 41(7):953–960

    Article  CAS  Google Scholar 

  • Surendhiran D, Sirajunnisa AR (2019) Chapter 18—Role of genetic engineering in bioethanol production from algae. In: Ray RC, Ramachandran S (eds) Bioethanol production from food crops. Academic, pp 361–381. https://doi.org/10.1016/B978-0-12-813766-6.00018-7

    Chapter  Google Scholar 

  • Tabil L, Adapa P, Kashaninejad M (2011) Biomass feedstock pre-processing-part 1: pre-treatment. Biofuel’s Engineering Process Technology 18:411–439

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2(4):707–738

    Article  CAS  Google Scholar 

  • Tan IS, Lee KT (2015) Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr Polym 124:311–321

    Article  CAS  Google Scholar 

  • Tang DYY, Yew GY, Koyande AK, Chew KW, Vo D-VN, Show PL (2020) Green technology for the industrial production of biofuels and bioproducts from microalgae: a review. Environ Chem Lett:1–19

    Google Scholar 

  • Tomás-Pejó E, Alvira P, Ballesteros M, Negro MJ (2011) Pretreatment technologies for lignocellulose-to-bioethanol conversion. In: Biofuels. Elsevier, pp 149–176

    Chapter  Google Scholar 

  • Trivedi N, Gupta V, Reddy CRK, Jha B (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 150:106–112

    Article  CAS  Google Scholar 

  • Ungureanu N, Vladut V, Biris S-S (2020) Capitalization of wastewater-grown algae in bioethanol production. Engineering for Rural Development: Jelgava, Latvia, 1859–1864

    Google Scholar 

  • van der Wal H, Sperber BL, Houweling-Tan B, Bakker RR, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437

    Article  Google Scholar 

  • Velazquez-Lucio, J., Rodríguez-Jasso, R. M., Colla, L. M., Sáenz-Galindo, A., Cervantes-Cisneros, D. E., Aguilar, C. N., Fernandes, B. D., & Ruiz, H. A. (2018). Microalgal biomass pretreatment for bioethanol production: a review

    Book  Google Scholar 

  • Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T (2014) Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresour Technol 172:169–173

    Article  CAS  Google Scholar 

  • Wang J-X, Cao J-P, Zhao X-Y, Liu S-N, Ren X-Y, Zhao M, Cui X, Chen Q, Wei X-Y (2019) Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride. Bioresour Technol 278:116–123

    Article  CAS  Google Scholar 

  • Yazdani P, Zamani A, Karimi K, Taherzadeh MJ (2015) Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresour Technol 176:196–202

    Article  CAS  Google Scholar 

  • Yeon J-H, Seo H-B, Oh S-H, Choi W-S, Kang D-H, Lee H-Y, Jung K-H (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB Journal 25(3):283–288

    Google Scholar 

  • Yoon M, Choi J, Lee J-W, Park D-H (2012) Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation. Radiat Phys Chem 81(8):999–1002

    Article  CAS  Google Scholar 

  • Yu T-S, Kofler H, Häusler RE, Hille D, Flügge U-I, Zeeman SC, Smith AM, Kossmann J, Lloyd J, Ritte G, Steup M, Lue W-L, Chen J, Weber A (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13(8):1907–1918. https://doi.org/10.1105/TPC.010091

    Article  CAS  PubMed Central  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774

    Article  CAS  Google Scholar 

  • Zachleder V, Brányiková I (2014) Starch overproduction by means of algae. In: Algal biorefineries. Springer, pp 217–240

    Chapter  Google Scholar 

Download references

Acknowledgments

The financial support provided by Natural Sciences and Engineering Research Council of Canada (Discovery Grant 355254, CRD Grant, and Strategic Grant 447075) is sincerely acknowledged. The support of James and Joanne Love Chair in Environmental Engineering at York University is appreciated as well.

Conflict of Interest

The Authors Declare no Conflict of Interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, G., Kaur Brar, S. (2022). Feedstocks and Pre-Treatment Techniques for Third-Generation Bioethanol Production. In: Soccol, C.R., Amarante Guimarães Pereira, G., Dussap, CG., Porto de Souza Vandenberghe, L. (eds) Liquid Biofuels: Bioethanol. Biofuel and Biorefinery Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-01241-9_13

Download citation

Publish with us

Policies and ethics