Skip to main content

Third-Generation Bioethanol Production Technologies

  • Chapter
  • First Online:
Liquid Biofuels: Bioethanol

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 12))

  • 648 Accesses

Abstract

The depletion of fossil fuels has increased demand for alternative energy resources globally. Currently, bioethanol and biodiesel produced via first and second generation technologies are the most attractive biofuels, which have shown sustainability as renewable energy sources. The challenge with first and second generation biofuels is that feedstocks are associated with food security and there is lower yield of the process. Recently, third generation bioethanol from microalgae and macroalgae has been shown to be an emerging technology for the biofuel industry globally. The advantage is that this system does not require large amounts of land and pure water. Moreover, bioethanol that has been produced from algae has been shown to have higher yield compared to the second generation production process. Therefore, the main aim of this review is to take a detailed look at the third generation bioethanol technologies and the prospective future of the process. The pretreatment processes that are associated with processing microalgae and macroalgae to generate fermentable sugars for bioethanol production are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Latif NIS, Ong MY, Nomanbhay S (2019) Hydrothermal liquefaction of Malaysia's algal biomass for high-quality bio-oil production. Eng Life Sci 19:246–269

    Article  CAS  Google Scholar 

  • Ahmed N, Dhar BR, Pramanik BK, Forehead H, Price WE, Hai FI (2021) A cookbook for bioethanol from macroalgae: review of selecting and combining processes to enhance bioethanol production. Curr Pollution Rep. https://doi.org/10.1007/s40726-021-00202-7

  • Al Abdallah Q, Nixon BT, Fortwendel JR (2016) The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front Energ Res 4:1–15

    Article  Google Scholar 

  • Alam MA, Yuan T, Xiong W, Zhang B, Lv Y, Xu J (2019) Process optimization for the production of high-concentration ethanol with Scenedesmus raciborskii biomass. Bioresour Technol 294:122219

    Article  CAS  Google Scholar 

  • Aparicio E, Rodríguez-Jasso RM, Pinales-Márquez CD, Loredo-Treviño A, Robledo-Olivo A, Aguilar CN, Kostas ET, Ruiz HA (2021) High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresour Technol 329:1–10

    Article  Google Scholar 

  • Bader AN, Rizza LS, Consolo VF, Curatti L (2020) Efficient saccharification of microalgal biomass by Trichoderma harzianum enzymes for the production of ethanol. Algal Res 48:1–9

    Article  Google Scholar 

  • Balina K, Lika A, Romagnoli F, Blumberga D (2017) Seaweed cultivation laboratory testing: effects of nutrients on growth rate of Ulva intestinalis. Energy Procedia 113:454–459

    Article  Google Scholar 

  • Bedzo OK, Dreyer CB, van Rensburg E, Görgens JF (2021) Optimisation of pretreatment catalyst, enzyme cocktail and solid loading for improved ethanol production from sweet sorghum bagasse. Bioenergy Res. https://doi.org/10.1007/s12155-021-10298-w

  • Bhatia L, Bachheti RK, Garlapati VK, Chandel AK (2020) Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00843-6

  • Bhore N (2014) Energy outlook: a view to 2040. Detroit Automotive Petroleum Forum, Detroit, MI, USA, pp 1–35

    Google Scholar 

  • Bold HC (1978) Introduction to the algae. Prentice-Hall, Hoboken

    Google Scholar 

  • Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  CAS  Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39:4222–4234

    Article  Google Scholar 

  • Cho H, Ra C-H, Kim S-K (2014) Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts. J Microbiol Biotechnol 24:264–269

    Article  CAS  Google Scholar 

  • Choi W, Han J, Lee C, Song C, Kim J, Seo Y, Lee S, Jung K, Kang D, Heo S (2012) Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chem Biochem Eng Q 26:15–21

    CAS  Google Scholar 

  • Choi YY, Patel AK, Hong ME, Chang WS, Sim SJ (2019) Microalgae bioenergy with carbon capture and storage (BECCS): an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour Technol Rep 7:100256–100270

    Google Scholar 

  • Chong TY, Cheah SA, Ong CT, Wong LY, Goh CR, Tan IS, Foo HCY, Lam MK, Lim S (2020) Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: a case study in Malaysia. Energy 210:118483–118491

    Article  Google Scholar 

  • Chung MRWY, Tan IS, Foo HCY, Lam MK, Lim S (2021) Potential of macroalgae-based biorefinery for lactic acid production from exergy aspect. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01375-3

  • Cui T, Yuan B, Guo H, Tian H, Wang W, Ma Y, Li C, Fei Q (2021) Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping. Biotechnol Biofuels 14:162

    Article  CAS  Google Scholar 

  • Dalla Marta A, Mancini M, Orlando F, Natali F, Capecchi L, Orlandini S (2014) Sweet sorghum for bioethanol production: crop responses to different water stress levels. Biomass Bioenergy 64:211–219

    Article  Google Scholar 

  • Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R (2019) A critical review on production of bioethanol from macroalgal biomass. Algal Res 42:101606

    Article  Google Scholar 

  • del Río PG, Gullón B, Pérez-Pérez A, Romaní A, Garrote G (2021) Microwave hydrothermal processing of the invasive macroalgae Sargassum muticum within a green biorefinery scheme. Bioresour Technol 340:1–10

    Google Scholar 

  • Edeh I (2020) Bioethanol production: an overview. In: Inambao F (ed) Bioethanol technologies. IntechOpen, pp 1–22

    Google Scholar 

  • Ekborg NA, Taylor LE, Longmire AG, Henrissat B, Weiner RM, Hutcheson SW (2006) Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl Environ Microbiol 72:3396–3405

    Article  CAS  Google Scholar 

  • García-López D, Olguín E, González-Portela R, Sánchez-Galván G, De Philippis R, Lovitt R, Llewellyn C, Fuentes-Grünewald C, Saldívar RP (2020) A novel two-phase bioprocess for the production of Arthrospira (spirulina) maxima LJGR1 at pilot plant scale during different seasons and for phycocyanin induction under controlled conditions. Bioresour Technol 298:1–11

    Article  Google Scholar 

  • Gohain M, Hasin M, Eldiehy KS, Bardhan P, Laskar K, Phukon H, Mandal M, Kalita D, Deka D (2021) Bio-ethanol production: a route to sustainability of fuels using bio-based heterogeneous catalyst derived from waste. Process Saf Environment Prot 146:190–200

    Article  CAS  Google Scholar 

  • Greetham D, Adams JM, Du C (2020) The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation. Sci Rep 10:1–15

    Article  Google Scholar 

  • Gupta PL, Lee S-M, Choi H-J (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417

    Article  CAS  Google Scholar 

  • Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Edwards MD, Critchley AT (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837

    Article  CAS  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  Google Scholar 

  • Hong IK, Jeon H, Lee SB (2014) Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem 20:2687–2691

    Article  CAS  Google Scholar 

  • Hong Y, Wu Y-R (2020) Acidolysis as a biorefinery approach to producing advanced bioenergy from macroalgal biomass: a state-of-the-art review. Bioresour Technol 318:124080

    Article  CAS  Google Scholar 

  • Huang X, Bai S, Liu Z, Hasunuma T, Kondo A, Ho S-H (2020) Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: direct high-density ethanol production with competitive life cycle impacts. Green Chem 22:153–162

    Article  CAS  Google Scholar 

  • Khalil SRA, Abdelhafez AA, Amer EAM (2015) Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Ann Agric Sci 60:317–324

    Article  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36

    Article  Google Scholar 

  • Kim D-H, Lee S-B, Jeong G-T (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour Technol 161:348–353

    Article  CAS  Google Scholar 

  • Kim JK, Yarish C, Hwang EK, Park M, Kim Y (2017) Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1–13

    Article  CAS  Google Scholar 

  • Kostas ET, White DA, Cook DJ (2020) Bioethanol production from UK seaweeds: investigating variable pre-treatment and enzyme hydrolysis parameters. Bioenergy Res 13:271–285

    Article  CAS  Google Scholar 

  • Kostas ET, White DA, Du C, Cook DJ (2016) Selection of yeast strains for bioethanol production from UK seaweeds. J Appl Phycol 28:1427–1441

    Article  CAS  Google Scholar 

  • Kumar BR, Mathimani T, Sudhakar MP, Rajendran K, Nizami A-S, Brindhadevi K, Pugazhendhi A (2021) A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renew Sust Energ Rev 138:110620–110649

    Article  Google Scholar 

  • Kumar K, Mishra SK, Shrivastav A, Park MS, Yang J-W (2015) Recent trends in the mass cultivation of algae in raceway ponds. Renew Sust Energ Rev 51:875–885

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour and Bioprocess 4:1–19

    Article  CAS  Google Scholar 

  • Kumar M, Sun Y, Rathour R, Pandey A, Thakur IS, Tsang DC (2020) Algae as potential feedstock for the production of biofuels and value-added products: opportunities and challenges. Sci Total Environ 716:1–17

    Article  Google Scholar 

  • Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P (2007) Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:1497–1501

    Article  CAS  Google Scholar 

  • Lee SY, Chang JH, Lee SB (2014) Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa. Biotechnol Bioprocess Eng 19:1022–1033

    Article  CAS  Google Scholar 

  • Liang S, Wei L, Passero ML, Feris K, McDonald AG (2017) Hydrothermal liquefaction of laboratory cultivated and commercial algal biomass into crude bio-oil. Environ Prog Sustain Energy 36:781–787

    Article  CAS  Google Scholar 

  • Macedo AA, Medeiros RG, Silvério TAB, Nelson DL, Oliveira DCS, dos Reis AB (2020) Possibilities and prospects regarding ethanol production from saccharin sorghum [Sorghum bicolor (L.) Moench]. SN Appl Sci 2:1–12

    Article  Google Scholar 

  • Marquez GPB, Santiañez WJE, Trono GC Jr, Montaño MNE, Araki H, Takeuchi H, Hasegawa T (2014) Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew Sustain Energ Rev 38:1056–1068

    Article  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80

    Article  CAS  Google Scholar 

  • Menegazzo ML, Fonseca GG (2019) Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renew Sustain Energ Rev 107:87–107

    Article  CAS  Google Scholar 

  • Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol 22:270–273

    Article  CAS  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  CAS  Google Scholar 

  • Omoni VT, Lag-Brotons AJ, Ibeto CN, Semple KT (2021) Effects of biological pre-treatment of lignocellulosic waste with white-rot fungi on the stimulation of 14C-phenanthrene catabolism in soils. Int Biodeterior Biodegradation 165:105324

    Article  CAS  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  CAS  Google Scholar 

  • Pablo G, Gomes-Dias JS, Rocha CM, Romaní A, Garrote G, Domingues L (2020) Recent trends on seaweed fractionation for liquid biofuels production. Bioresour Technol 299:1–15

    Google Scholar 

  • Panahi HKS, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M (2019) Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae). Renew Sust Energ Rev 112:626–642

    Article  Google Scholar 

  • Pang N, Gu X, Chen S, Kirchhoff H, Lei H, Roje S (2019) Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renew Sustain Energ Rev 112:450–460

    Article  CAS  Google Scholar 

  • Peñuela A, Robledo D, Bourgougnon N, Bedoux G, Hernández-Núñez E, Freile-Pelegrín Y (2018) Environmentally friendly valorization of Solieria filiformis (Gigartinales, Rhodophyta) from IMTA using a biorefinery concept. Mar Drugs 16:1–19

    Article  Google Scholar 

  • Pereira H, Silva J, Santos T, Gangadhar KN, Raposo A, Nunes C, Coimbra MA, Gouveia L, Barreira L, Varela J (2019) Nutritional potential and toxicological evaluation of Tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors. Molecules 24:1–18

    Article  Google Scholar 

  • Qarri A, Israel A (2020) Seasonal biomass production, fermentable saccharification and potential ethanol yields in the marine macroalga Ulva sp.(Chlorophyta). Renew Energ 145:2101–2107

    Article  CAS  Google Scholar 

  • Rajak RC, Jacob S, Kim BS (2020) A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review. Sci Total Environ 716:1–17

    Article  Google Scholar 

  • Ramachandra TV, Hebbale D (2020) Bioethanol from macroalgae: prospects and challenges. Renew Sustain Energ Rev 117:1–18

    Article  Google Scholar 

  • Salvi KP, da Silva OW, Horta PA, Rörig LR, de Oliveira BE (2021) A new model of algal turf scrubber for bioremediation and biomass production using seaweed aquaculture principles. J Appl Phycol. https://doi.org/10.1007/s10811-021-02430-2

  • Santos SCR, Ungureanu G, Volf I, Boaventura RAR, Botelho CMS (2018) Macroalgae biomass as sorbent for metal ions. In: Popa V, Volf I (eds) Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier, Amsterdam, pp 69–112

    Chapter  Google Scholar 

  • Satari B, Jaiswal AK (2021) Green fractionation of 2G and 3G feedstocks for ethanol production: advances, incentives and barriers. Curr Opin Food Sci 37:1–9

    Article  CAS  Google Scholar 

  • Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB (2013) Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol–comparison of five pretreatment technologies. Bioresour Technol 140:36–42

    Article  CAS  Google Scholar 

  • Seo G, Kim HS, Cho JM, Kim M, Park W-K, Chang YK (2020) Effect of post-treatment process of microalgal hydrolysate on bioethanol production. Sci Rep 10:1–12

    Google Scholar 

  • Sharma B, Larroche C, Dussap C-G (2020) Comprehensive assessment of 2G bioethanol production. Bioresour Technol 313:123630

    Article  CAS  Google Scholar 

  • Smachetti MES, Rizza LS, Coronel CD, Do Nascimento M, Curatti L (2018) Microalgal biomass as an alternative source of sugars for the production of bioethanol. In: Kulia A, Sharma V (eds) Principles and applications of fermentation technology. John Wiley & Sons, Hoboken, pp 351–386

    Chapter  Google Scholar 

  • Sun Z, Liu J, Zhou Z-G (2016) Algae for biofuels: an emerging feedstock. In: Luque R, Lin CSK, Wilson K, Clark J (eds) Handbook of biofuels production, 2nd edn. Woodhead Publishing, Cambridge, pp 673–698

    Google Scholar 

  • Tan IS, Lam MK, Foo HCY, Lim S, Lee KT (2020) Advances of macroalgae biomass for the third generation of bioethanol production. Chin J Chem Eng 28:502–517

    Article  CAS  Google Scholar 

  • Tapia-Tussell R, Avila-Arias J, Domínguez Maldonado J, Valero D, Olguin-Maciel E, Pérez-Brito D, Alzate-Gaviria L (2018) Biological pretreatment of mexican caribbean macroalgae consortiums using Bm-2 strain (Trametes hirsuta) and its enzymatic broth to improve biomethane potential. Energies 11:1–11

    Article  Google Scholar 

  • Tedesco S, Benyounis K, Olabi A (2013) Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland. Energy 61:27–33

    Article  CAS  Google Scholar 

  • Teixeira ACR, Sodré JR, Guarieiro LLN, Vieira ED, De Medeiros FF, Alves CT (2016) A review on second and third generation bioethanol production. SAE Technical Paper 2016-36-0515. https://doi.org/10.4271/2016-36-0515

  • Thompson TM, Young BR, Baroutian S (2019) Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process Technol 195:106151

    Article  CAS  Google Scholar 

  • Tinôco D, Genier HLA, da Silveira WB (2021) Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures. Renew Energy 173:188–196

    Article  Google Scholar 

  • Yuhendra A, Farghali M, Mohamed IM, Iwasaki M, Tangtaweewipat S, Ihara I, Sakai R, Umetsu K (2021) Potential of biogas production from the anaerobic digestion of Sargassum fulvellum macroalgae: influences of mechanical, chemical, and biological pretreatments. Biochem Eng J 175:108140

    Article  Google Scholar 

  • Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi I-G, Kim KH (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the Durban University of Technology (DUT). The financial assistance of the NRF/BRICS STI Grant is hereby acknowledged as well as the consortium partners. We also acknowledge the technical support of the Enzyme Technology Research Group.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Permaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dlangamandla, N., Permaul, K. (2022). Third-Generation Bioethanol Production Technologies. In: Soccol, C.R., Amarante Guimarães Pereira, G., Dussap, CG., Porto de Souza Vandenberghe, L. (eds) Liquid Biofuels: Bioethanol. Biofuel and Biorefinery Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-01241-9_12

Download citation

Publish with us

Policies and ethics