Skip to main content

Pneumoperitoneum Physiology

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Laparoscopy and robotic surgery have evolved in the last 30 years of minimally invasive surgery, and several authors have described the outcomes of these surgical approaches in different specialties. In this scenario, the importance of a surgeon’s familiarity with the physiologic principles of pneumoperitoneum and its effects on the patient is crucial to avoid complications and optimize operative outcomes. This chapter describes the basic physiology of pneumoperitoneum and potential complications arising from its use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wheeless CR. Outpatient laparoscope sterilization under local anesthesia. Obstet Gynecol. 1972;39:767.

    PubMed  Google Scholar 

  2. Dubois F, Icard P, Berthelot G, et al. Coelioscopic cholecystectomy. Preliminary report of 36 cases. Ann Surg. 1990;211:60.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Clayman RV, Kavoussi LR, Soper NJ, et al. Laparoscopic nephrectomy: initial case report. J Urol. 1991;146:278.

    CAS  PubMed  Google Scholar 

  4. Uhlich GA. Laparoscopy: the question of the proper gas. Gastrointest Endosc. 1982;28:212.

    CAS  PubMed  Google Scholar 

  5. Menes T, Spivak H. Laparoscopy: searching for the proper insufflation gas. Surg Endosc. 2000;14:1050.

    CAS  PubMed  Google Scholar 

  6. Wolf JS, Stoller ML. The physiology of laparoscopy: basic principles, complications and other considerations. J Urol. 1994;152:294.

    PubMed  Google Scholar 

  7. Brackman MR, Finelli FC, Light T, et al. Helium pneumoperitoneum ameliorates hypercarbia and acidosis associated with carbon dioxide insufflation during laparoscopic gastric bypass in pigs. Obes Surg. 2003;13:768.

    PubMed  Google Scholar 

  8. Sharp JR, Pierson WP, Brady CE. Comparison of CO2- and N2O-induced discomfort during peritoneoscopy under local anesthesia. Gastroenterology. 1982;82:453.

    CAS  PubMed  Google Scholar 

  9. Minoli G, Terruzzi V, Spinzi GC, et al. The influence of carbon dioxide and nitrous oxide on pain during laparoscopy: a double-blind, controlled trial. Gastrointest Endosc. 1982;28:173.

    CAS  PubMed  Google Scholar 

  10. Gunatilake DE. Case report: fatal intraperitoneal explosion during electrocoagulation via laparoscopy. Int J Gynaecol Obstet. 1978;15:353.

    CAS  PubMed  Google Scholar 

  11. Hunter JG, Staheli J, Oddsdottir M, et al. Nitrous oxide pneumoperitoneum revisited. Is there a risk of combustion? Surg Endosc. 1995;9:501.

    CAS  PubMed  Google Scholar 

  12. Diamant M, Benumof JL, Saidman LJ. Hemodynamics of increased intra-abdominal pressure: interaction with hypovolemia and halothane anesthesia. Anesthesiology. 1978;48:23.

    CAS  PubMed  Google Scholar 

  13. Richardson JD, Trinkle JK. Hemodynamic and respiratory alterations with increased intra-abdominal pressure. J Surg Res. 1976;20:401.

    CAS  PubMed  Google Scholar 

  14. O'Malley C, Cunningham AJ. Physiologic changes during laparoscopy. Anesthesiol Clin North Am. 2001;19:1.

    CAS  PubMed  Google Scholar 

  15. McLaughlin JG, Scheeres DE, Dean RJ, et al. The adverse hemodynamic effects of laparoscopic cholecystectomy. Surg Endosc. 1995;9:121.

    CAS  PubMed  Google Scholar 

  16. Dexter SP, Vucevic M, Gibson J, et al. Hemodynamic consequences of high- and low-pressure capnoperitoneum during laparoscopic cholecystectomy. Surg Endosc. 1999;13:376.

    CAS  PubMed  Google Scholar 

  17. Neudecker J, Sauerland S, Neugebauer E, et al. The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg Endosc. 2002;16:1121.

    CAS  PubMed  Google Scholar 

  18. Thorington J. Schmidt, CF: a study of urinary output and blood-pressure changes resulting in experimental ascites. Am J Med Sci. 1932;165:880.

    Google Scholar 

  19. Bradley SE, Bradley GP. The effect of increased intra-abdominal pressure on renal function in man. J Clin Invest. 1947;26:1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harman PK, Kron IL, McLachlan HD, et al. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982;196:594.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiu AW, Azadzoi KM, Hatzichristou DG, et al. Effects of intra-abdominal pressure on renal tissue perfusion during laparoscopy. J Endourol. 1994;8:99.

    CAS  PubMed  Google Scholar 

  22. London ET, Ho HS, Neuhaus AM, et al. Effect of intravascular volume expansion on renal function during prolonged CO2 pneumoperitoneum. Ann Surg. 2000;231:195.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McDougall EM, Monk TG, Wolf JS, et al. The effect of prolonged pneumoperitoneum on renal function in an animal model. J Am Coll Surg. 1996;182:317.

    CAS  PubMed  Google Scholar 

  24. Chang DT, Kirsch AJ, Sawczuk IS. Oliguria during laparoscopic surgery. J Endourol. 1994;8:349.

    CAS  PubMed  Google Scholar 

  25. Kerbl K, Clayman RV, McDougall EM, et al. Laparoscopic nephrectomy: the Washington university experience. Br J Urol. 1994;73:231.

    CAS  PubMed  Google Scholar 

  26. Pérez J, Taurá P, Rueda J, et al. Role of dopamine in renal dysfunction during laparoscopic surgery. Surg Endosc. 2002;16:1297.

    PubMed  Google Scholar 

  27. Koivusalo AM, Kellokumpu I, Ristkari S, et al. Splanchnic and renal deterioration during and after laparoscopic cholecystectomy: a comparison of the carbon dioxide pneumoperitoneum and the abdominal wall lift method. Anesth Analg. 1997;85:886.

    CAS  PubMed  Google Scholar 

  28. Caldwell CB, Ricotta JJ. Changes in visceral blood flow with elevated intraabdominal pressure. J Surg Res. 1987;43:14.

    CAS  PubMed  Google Scholar 

  29. Evasovich MR, Clark TC, Horattas MC, et al. Does pneumoperitoneum during laparoscopy increase bacterial translocation? Surg Endosc. 1996;10:1176.

    CAS  PubMed  Google Scholar 

  30. Irgau I, Koyfman Y, Tikellis JI. Elective intraoperative intracranial pressure monitoring during laparoscopic cholecystectomy. Arch Surg. 1995;130:1011.

    CAS  PubMed  Google Scholar 

  31. Josephs LG, Este-McDonald JR, Birkett DH, et al. Diagnostic laparoscopy increases intracranial pressure. J Trauma. 1994;36:815.

    CAS  PubMed  Google Scholar 

  32. Rosenthal RJ, Hiatt JR, Phillips EH, et al. Intracranial pressure. Effects of pneumoperitoneum in a large-animal model. Surg Endosc. 1997;11:376.

    CAS  PubMed  Google Scholar 

  33. Fujii Y, Tanaka H, Tsuruoka S, et al. Middle cerebral arterial blood flow velocity increases during laparoscopic cholecystectomy. Anesth Analg. 1994;78:80.

    CAS  PubMed  Google Scholar 

  34. Abe K, Hashimoto N, Taniguchi A, et al. Middle cerebral artery blood flow velocity during laparoscopic surgery in head-down position. Surg Laparosc Endosc. 1998;8:1.

    CAS  PubMed  Google Scholar 

  35. Schöb OM, Allen DC, Benzel E, et al. A comparison of the pathophysiologic effects of carbon dioxide, nitrous oxide, and helium pneumoperitoneum on intracranial pressure. Am J Surg. 1996;172:248.

    PubMed  Google Scholar 

  36. Este-McDonald JR, Josephs LG, Birkett DH, et al. Changes in intracranial pressure associated with apneumic retractors. Arch Surg. 1995;130:362.

    CAS  PubMed  Google Scholar 

  37. Halverson AL, Barrett WL, Iglesias AR, et al. Decreased cerebrospinal fluid absorption during abdominal insufflation. Surg Endosc. 1999;13:797.

    CAS  PubMed  Google Scholar 

  38. Ben-Haim M, Rosenthal RJ. Causes of arterial hypertension and splachnic ischemia during acute elevations in intra-abdominal pressure with CO2 pneumoperitoneum: a complex central nervous system mediated response. Int J Color Dis. 1999;14:227.

    CAS  Google Scholar 

  39. Motew M, Ivankovich AD, Bieniarz J, et al. Cardiovascular effects and acid-base and blood gas changes during laparoscopy. Am J Obstet Gynecol. 1973;115:1002.

    CAS  PubMed  Google Scholar 

  40. Gutt CN, Oniu T, Mehrabi A, et al. Circulatory and respiratory complications of carbon dioxide insufflation. Dig Surg. 2004;21:95.

    CAS  PubMed  Google Scholar 

  41. Hardacre JM, Talamini MA. Pulmonary and hemodynamic changes during laparoscopy--are they important? Surgery. 2000;127:241.

    CAS  PubMed  Google Scholar 

  42. Schwenk W, Böhm B, Witt C, et al. Pulmonary function following laparoscopic or conventional colorectal resection: a randomized controlled evaluation. Arch Surg. 1999;134:6.

    CAS  PubMed  Google Scholar 

  43. Hasukić S, Mesić D, Dizdarević E, et al. Pulmonary function after laparoscopic and open cholecystectomy. Surg Endosc. 2002;16:163.

    PubMed  Google Scholar 

  44. Alexander GD, Brown EM. Physiologic alterations during pelvic laparoscopy. Am J Obstet Gynecol. 1969;105:1078.

    CAS  PubMed  Google Scholar 

  45. Montalva M, Das B. Carbon dioxide homeostasis during laparoscopy. South Med J. 1976;69:602.

    CAS  PubMed  Google Scholar 

  46. Mullett CE, Viale JP, Sagnard PE, et al. Pulmonary CO2 elimination during surgical procedures using intra- or extraperitoneal CO2 insufflation. Anesth Analg. 1993;76:622.

    CAS  PubMed  Google Scholar 

  47. PRICE, H. L. Effects of carbon dioxide on the cardiovascular system. Anesthesiology. 1960;21:652.

    PubMed  Google Scholar 

  48. Cullen DJ, Eger EI. Cardiovascular effects of carbon dioxide in man. Anesthesiology. 1974;41:345.

    CAS  PubMed  Google Scholar 

  49. Seed RF, Shakespeare TF, Muldoon MJ. Carbon dioxide homeostasis during anaesthesia for laparoscopy. Anaesthesia. 1970;25:223.

    CAS  PubMed  Google Scholar 

  50. Farhi LE, Rahn H. Dynamics of changes in carbon dioxide stores. Anesthesiology. 1960;21:604.

    CAS  PubMed  Google Scholar 

  51. Wallace DH, Serpell MG, Baxter JN, et al. Randomized trial of different insufflation pressures for laparoscopic cholecystectomy. Br J Surg. 1997;84:455.

    CAS  PubMed  Google Scholar 

  52. Williams MD, Murr PC. Laparoscopic insufflation of the abdomen depresses cardiopulmonary function. Surg Endosc. 1993;7:12.

    CAS  PubMed  Google Scholar 

  53. Joris JL, Noirot DP, Legrand MJ, et al. Hemodynamic changes during laparoscopic cholecystectomy. Anesth Analg. 1993;76:1067.

    CAS  PubMed  Google Scholar 

  54. Kelman GR, Swapp GH, Smith I, et al. Caridac output and arterial blood-gas tension during laparoscopy. Br J Anaesth. 1972;44:1155.

    CAS  PubMed  Google Scholar 

  55. Chaudhary D, Verma GR, Gupta R, et al. Comparative evaluation of the inflammatory mediators in patients undergoing laparoscopic versus conventional cholecystectomy. Aust N Z J Surg. 1999;69:369.

    CAS  PubMed  Google Scholar 

  56. Cho JM, LaPorta AJ, Clark JR, et al. Response of serum cytokines in patients undergoing laparoscopic cholecystectomy. Surg Endosc. 1994;8:1380.

    CAS  PubMed  Google Scholar 

  57. Glaser F, Sannwald GA, Buhr HJ, et al. General stress response to conventional and laparoscopic cholecystectomy. Ann Surg. 1995;221:372.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Harmon GD, Senagore AJ, Kilbride MJ, et al. Interleukin-6 response to laparoscopic and open colectomy. Dis Colon Rectum. 1994;37:754.

    CAS  PubMed  Google Scholar 

  59. Joris J, Cigarini I, Legrand M, et al. Metabolic and respiratory changes after cholecystectomy performed via laparotomy or laparoscopy. Br J Anaesth. 1992;69:341.

    CAS  PubMed  Google Scholar 

  60. Maruszynski M, Pojda Z. Interleukin 6 (IL-6) levels in the monitoring of surgical trauma. A comparison of serum IL-6 concentrations in patients treated by cholecystectomy via laparotomy or laparoscopy. Surg Endosc. 1995;9:882.

    CAS  PubMed  Google Scholar 

  61. Leung KL, Lai PB, Ho RL, et al. Systemic cytokine response after laparoscopic-assisted resection of rectosigmoid carcinoma: a prospective randomized trial. Ann Surg. 2000;231:506.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Roumen RM, van Meurs PA, Kuypers HH, et al. Serum interleukin-6 and C reactive protein responses in patients after laparoscopic or conventional cholecystectomy. Eur J Surg. 1992;158:541.

    CAS  PubMed  Google Scholar 

  63. Hill AD, Banwell PE, Darzi A, et al. Inflammatory markers following laparoscopic and open hernia repair. Surg Endosc. 1995;9:695.

    CAS  PubMed  Google Scholar 

  64. Chekan EG, Nataraj C, Clary EM, et al. Intraperitoneal immunity and pneumoperitoneum. Surg Endosc. 1999;13:1135.

    CAS  PubMed  Google Scholar 

  65. West MA, Baker J, Bellingham J. Kinetics of decreased LPS-stimulated cytokine release by macrophages exposed to CO2. J Surg Res. 1996;63:269.

    CAS  PubMed  Google Scholar 

  66. Sietses C, von Blomberg ME, Eijsbouts QA, et al. The influence of CO2 versus helium insufflation or the abdominal wall lifting technique on the systemic immune response. Surg Endosc. 2002;16:525.

    CAS  PubMed  Google Scholar 

  67. Karayiannakis AJ, Makri GG, Mantzioka A, et al. Systemic stress response after laparoscopic or open cholecystectomy: a randomized trial. Br J Surg. 1997;84:467.

    CAS  PubMed  Google Scholar 

  68. Le Blanc-Louvry I, Coquerel A, Koning E, et al. Operative stress response is reduced after laparoscopic compared to open cholecystectomy: the relationship with postoperative pain and ileus. Dig Dis Sci. 2000;45:1703.

    PubMed  Google Scholar 

  69. Wolf JS, Clayman RV, Monk TG, et al. Carbon dioxide absorption during laparoscopic pelvic operation. J Am Coll Surg. 1995;180:555.

    PubMed  Google Scholar 

  70. Kent RB. Subcutaneous emphysema and hypercarbia following laparoscopic cholecystectomy. Arch Surg. 1991;126:1154.

    PubMed  Google Scholar 

  71. Hall D, Goldstein A, Tynan E, et al. Profound hypercarbia late in the course of laparoscopic cholecystectomy: detection by continuous capnometry. Anesthesiology. 1993;79:173.

    CAS  PubMed  Google Scholar 

  72. Murray DP, Rankin RA, Lackey C. Bilateral pneumothoraces complicating peritoneoscopy. Gastrointest Endosc. 1984;30:45.

    CAS  PubMed  Google Scholar 

  73. Pascual JB, Baranda MM, Tarrero MT, et al. Subcutaneous emphysema, pneumomediastinum, bilateral pneumothorax and pneumopericardium after laparoscopy. Endoscopy. 1990;22:59.

    CAS  PubMed  Google Scholar 

  74. Herrerías JM, Ariza A, Garrido M. An unusual complication of laparoscopy: pneumopericardium. Endoscopy. 1980;12:254.

    PubMed  Google Scholar 

  75. Nicholson RD, Berman ND. Pneumopericardium following laparoscopy. Chest. 1979;76:605.

    CAS  PubMed  Google Scholar 

  76. Ostman PL, Pantle-Fisher FH, Faure EA, et al. Circulatory collapse during laparoscopy. J Clin Anesth. 1990;2:129.

    CAS  PubMed  Google Scholar 

  77. JERNSTROM, P. Air embolism during peritoneoscopy. Am J Clin Pathol. 1951;21:573.

    PubMed  Google Scholar 

  78. O'Sullivan DC, Micali S, Averch TD, et al. Factors involved in gas embolism after laparoscopic injury to inferior vena cava. J Endourol. 1998;12:149.

    CAS  PubMed  Google Scholar 

  79. Carmichael DE. Laparoscopy-cardiac considerations. Fertil Steril. 1971;22:69.

    CAS  PubMed  Google Scholar 

  80. Scott DB, Julian DG. Observations on cardiac arrythmias during laparoscopy. Br Med J. 1972;1:411.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Neudecker J, Sauerland S, Neugebauer E, et al. The euro- pean association for endoscopic surgery clinical practice guide- line on the pneumoperitoneum for laparoscopic surgery. Surg Endosc. 2002;16:1121–43. https://doi.org/10.1007/s00464-001-9166-7.

    Article  CAS  PubMed  Google Scholar 

  82. Shahait M, Cockrell R, Yezdani M, et al. Improved out- comes utilizing a valveless-trocar system during robot-assisted radical prostatectomy (RARP). Jsls. 2019; https://doi.org/10.4293/jsls.2018.00085.

  83. NeppleKG KD, Bhayani SB. Benchtop evaluation of pressure barrier insufflator and standard insufflator systems. Surg Endosc. 2013;27:333–8. https://doi.org/10.1007/s00464-012-2434-x.

    Article  Google Scholar 

  84. Bucur P, Hofmann M, Menhadji A, et al. Comparison of pneumoperitoneum stability between a valveless trocar system and conventional insufflation: a prospective randomized trial. Urology. 2016;94:274–80. https://doi.org/10.1016/j.urology.2016.04.022.

    Article  PubMed  Google Scholar 

  85. Herati AS, Andonian S, Rais-Bahrami S, et al. Use of the valveless trocar system reduces carbon dioxide absorption during. Urology. 2011;77(5):1126–32.

    PubMed  Google Scholar 

  86. Covotta M, Claroni C, Torregiani G, et al. A prospective, randomized, clinical trial on the effects of a valveless trocar on respiratory mechanics during robotic radical cystectomy: a pilot 089 study. Anesth Analg. 2017;124:1794–801. https://doi.org/10.1213/ane.0000000000002027.

    Article  CAS  PubMed  Google Scholar 

  87. George AK, Wimhofer R, Viola KV, et al. Utilization of a novel valveless trocar system during robotic-assisted laparoscopic prostatectomy. World J Urol. 2015;33:1695–9. https://doi.org/10.1007/s00345-015-1521-8.

    Article  PubMed  Google Scholar 

  88. Horstmann M, Horton K, Kurz M, et al. Prospective comparison between the AirSeal(R) system valve-less trocar and a standard Versaport plus V2 trocar in robotic-assisted radical prostatectomy. J Endourol. 2013;27:579–82. https://doi.org/10.1089/end.2012.0632.

    Article  PubMed  Google Scholar 

  89. Madueke-Laveaux OS, Advincula A, Grimes CL, et al. Comparison of carbon dioxide absorption rates in gynecologic laparoscopy with a valveless versus standard insufflation system: randomized controlled trial. J Minim Invasive Gynecol. 2020;27:225–34. https://doi.org/10.1016/j.jmig.2019.05.005.

    Article  PubMed  Google Scholar 

  90. Miyano G, Nakamura H, Seo S, et al. Pneumoperitoneum and hemodynamic stability during pediatric laparoscopic appendectomy. J Pediatr Surg. 2016;51:1949–51. https://doi.org/10.1016/j.jpedsurg.2016.09.016.

    Article  PubMed  Google Scholar 

  91. Annino F, Topazio L, Autieri D, et al. Robotic partial nephrectomy performed with Airseal versus a standard CO2 pressure pneumoperitoneum insufflator: a prospective comparative study. Surg Endosc. 2017;31:1583–90. https://doi.org/10.1007/s00464-016-5144-y.

    Article  PubMed  Google Scholar 

  92. Gurusamy KS, Samraj K, Davidson BR. Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. In: The Cochrane Collaboration, editor. Cochrane database of systematic reviews. Chichester: John Wiley; 2009.

    Google Scholar 

  93. Sroussi J, Elies A, Rigouzzo A, et al. Low pressure gynecological laparoscopy (7mmHg) with AirSeal((R)) System versus a standard insufflation (15mmHg): a pilot study in 60 patients. J Gynecol Obstet Hum Reprod. 2017;46:155–8. https://doi.org/10.1016/j.jogoh.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  94. Dalli J, Khan MF, Nolan K, Cahill RA. Laparoscopic pneumoperitoneum escape and contamination during surgery using the Airseal Insufflation System - a video vignette. Colorectal Dis. 2020 Sep;22(9):1029–1030. https://doi.org/10.1111/codi.15255. Epub 2020 Sep 1. PMID: 32644263; PMCID: PMC7362043.

  95. Balayssac D, Selvy M, Martelin A, et al. Clinical and organizational impact of the AIRSEAL® insufflation system during laparoscopic surgery: a systematic review. World J Surg. 2021;45:705–18. https://doi.org/10.1007/s00268-020-05869-5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kominsky, H.D., Cadeddu, J.A., Moschovas, M.C., Leveillee, R.J. (2022). Pneumoperitoneum Physiology. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics