Skip to main content

Minimising Cardiometabolic Risk Factors in Patients with Hypopituitarism

  • Chapter
  • First Online:
Pituitary Disorders throughout the Life Cycle
  • 325 Accesses

Abstract

Hypopituitarism, irrespective of the underlying cause, is a complicated condition, which requires careful hormone assessment and optimal replacement therapy. Deficiencies of one or more pituitary hormones, such as growth hormone, thyroid hormone, cortisol, or gonadal hormones, have been associated with adverse effects on glucose and lipid metabolism, vascular endothelial cells, as well as weight regulation and fat deposition. Moreover, the time and route of administration and the dose of hormone replacement are also important mediators of the cardiovascular risk profile, requiring careful titration. The aim of this chapter is to (1) review the pathophysiology of pituitary hormone deficiencies and their link with glucose and lipid metabolism as well as with endothelial function, (2) to provide an overview of important studies highlighting the implications of hormone deficiencies on cardiometabolic risk, and (3) to provide advice on the management of hormone deficiencies, highlighting possible implications for the overall cardiometabolic risk of the individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feldt-Rasmussen U, Klose M. Central hypothyroidism and its role for cardiovascular risk factors in hypopituitary patients. Endocrine. 2016;54:15–23.

    Article  CAS  PubMed  Google Scholar 

  2. Caicedo D, Díaz O, Devesa P, Devesa J. Growth hormone (GH) and cardiovascular system. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19010290.

  3. Møller N, Gjedsted J, Gormsen L, Fuglsang J, Djurhuus C. Effects of growth hormone on lipid metabolism in humans. Growth Hormon IGF Res. 2003;13:S18–21.

    Article  CAS  Google Scholar 

  4. Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M, Katsuya T, Rakugi H. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine. 2009;35:341–6.

    Article  CAS  PubMed  Google Scholar 

  5. Xing D, Nozell S, Chen Y-F, Hage F, Oparil S. Estrogen and mechanisms of vascular protection. Arterioscler Thromb Vasc Biol. 2009;29:289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol. 2018;315:H1569–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Godsland IF. Oestrogens and insulin secretion. Diabetologia. 2005;48:2213–20.

    Article  CAS  PubMed  Google Scholar 

  8. Barros RPA, Gustafsson J-Å. Estrogen receptors and the metabolic network. Cell Metab. 2011;14:289–99.

    Article  CAS  PubMed  Google Scholar 

  9. Navarro G, Allard C, Xu W, Mauvais-Jarvis F. The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity. 2015;23:713–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kirlangic OF, Yilmaz-Oral D, Kaya-Sezginer E, Toktanis G, Tezgelen AS, Sen E, Khanam A, Oztekin CV, Gur S. The effects of androgens on cardiometabolic syndrome: current therapeutic concepts. Sex Med. 2020;8:132–55.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Connelly PW. The role of hepatic lipase in lipoprotein metabolism. Clin Chim Acta. 1999;286:243–55.

    Article  CAS  PubMed  Google Scholar 

  12. Schleich F, Legros JJ. Effects of androgen substitution on lipid profile in the adult and aging hypogonadal male. Eur J Endocrinol. 2004;151:415–24.

    Article  CAS  PubMed  Google Scholar 

  13. Grossmann M. Testosterone and glucose metabolism in men: current concepts and controversies. J Endocrinol. 2014;220:R37–55.

    Article  CAS  PubMed  Google Scholar 

  14. Lorigo M, Mariana M, Lemos MC, Cairrao E. Vascular mechanisms of testosterone: the non-genomic point of view. J Steroid Biochem Mol Biol. 2020. https://doi.org/10.1016/j.jsbmb.2019.105496.

  15. Teixeira P d FDS, Dos Santos PB, Pazos-Moura CC. The role of thyroid hormone in metabolism and metabolic syndrome. Ther Adv Endocrinol Metab. 2020;11:2042018820917869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;344:501–9.

    Article  CAS  PubMed  Google Scholar 

  17. Geist D, Hönes GS, Gassen J, Kerp H, Kleinbongard P, Heusch G, Führer D, Moeller LC. Noncanonical thyroid hormone receptor α action mediates arterial vasodilation. Endocrinology. 2021. https://doi.org/10.1210/endocr/bqab099.

  18. Quinkler M, Ekman B, Zhang P, Isidori AM, Murray RD. Mortality data from the European Adrenal Insufficiency Registry—patient characterization and associations. Clin Endocrinol. 2018;89:30–5.

    Article  CAS  Google Scholar 

  19. Burford NG, Webster NA, Cruz-Topete D. Hypothalamic-pituitary-adrenal Axis modulation of glucocorticoids in the cardiovascular system. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102150.

  20. Rosmond R, Björntorp P. The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Intern Med. 2000;247:188–97.

    Article  CAS  PubMed  Google Scholar 

  21. Rafacho A, Ortsäter H, Nadal A, Quesada I. Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. J Endocrinol. 2014;223:R49–62.

    Article  CAS  PubMed  Google Scholar 

  22. Postma MR, van Beek AP, Jönsson PJ, van Bunderen CC, Drent ML, Mattsson AF, Camacho-Hubner C. Improvements in body composition after 4 years of growth hormone treatment in adult-onset hypopituitarism compared to age-matched controls. Neuroendocrinology. 2019;109:131–40.

    Article  CAS  PubMed  Google Scholar 

  23. Lundberg E, Kriström B, Zouater H, Deleskog A, Höybye C. Ten years with biosimilar rhGH in clinical practice in Sweden – experience from the prospective PATRO children and adult studies. BMC Endocr Disord. 2020;20:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rochira V, Mossetto G, Jia N, et al. Analysis of characteristics and outcomes by growth hormone treatment duration in adult patients in the Italian cohort of the Hypopituitary Control and Complications Study (HypoCCS). J Endocrinol Investig. 2018;41:1259–66.

    Article  CAS  Google Scholar 

  25. Scarano E, Riccio E, Somma T, Arianna R, Romano F, Di Benedetto E, de Alteriis G, Colao A, Di Somma C. Impact of long-term growth hormone replacement therapy on metabolic and cardiovascular parameters in adult growth hormone deficiency: comparison between adult and elderly patients. Front Endocrinol (Lausanne). 2021;12:635983.

    Article  Google Scholar 

  26. Newman CB, Carmichael JD, Kleinberg DL. Effects of low dose versus high dose human growth hormone on body composition and lipids in adults with GH deficiency: a meta-analysis of placebo-controlled randomized trials. Pituitary. 2015;18:297–305.

    Article  CAS  PubMed  Google Scholar 

  27. Yuan Y, Zhou B, Liu S, Wang Y, Wang K, Zhang Z, Niu W. Meta-analysis of metabolic changes in children with idiopathic growth hormone deficiency after recombinant human growth hormone replacement therapy. Endocrine. 2021;71:35–46.

    Article  CAS  PubMed  Google Scholar 

  28. Filipsson Nyström H, Feldt-Rasmussen U, Kourides I, Popovic V, Koltowska-Häggström M, Jonsson B, Johannsson G. The metabolic consequences of thyroxine replacement in adult hypopituitary patients. Pituitary. 2012;15:495–504.

    Article  PubMed  CAS  Google Scholar 

  29. Klose M, Marina D, Hartoft-Nielsen ML, Klefter O, Gavan V, Hilsted L, Rasmussen AK, Feldt-Rasmussen U. Central hypothyroidism and its replacement have a significant influence on cardiovascular risk factors in adult hypopituitary patients. J Clin Endocrinol Metab. 2013;98:3802–10.

    Article  CAS  PubMed  Google Scholar 

  30. Gencer B, Bonomi M, Adorni MP, Sirtori CR, Mach F, Ruscica M. Cardiovascular risk and testosterone – from subclinical atherosclerosis to lipoprotein function to heart failure. Rev Endocr Metab Disord. 2021;22:257–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. NCT03518034. A study to evaluate the effect of testosterone replacement therapy (TRT) on the incidence of major adverse cardiovascular events (MACE) and efficacy measures in hypogonadal men (TRAVERSE). 2019.

    Google Scholar 

  32. Kim SH, Park JJ, Kim KH, Yang HJ, Kim DS, Lee CH, Jeon YS, Shim SR, Kim JH. Efficacy of testosterone replacement therapy for treating metabolic disturbances in late-onset hypogonadism: a systematic review and meta-analysis. Int Urol Nephrol. 2021. https://doi.org/10.1007/s11255-021-02876-w.

  33. Li S-Y, Zhao Y-L, Yang Y-F, Wang X, Nie M, Wu X-Y, Mao J-F. Metabolic effects of testosterone replacement therapy in patients with type 2 diabetes mellitus or metabolic syndrome: a meta-analysis. Int J Endocrinol. 2020;2020:4732021.

    PubMed  PubMed Central  Google Scholar 

  34. Godsland IF. Effects of postmenopausal hormone replacement therapy on lipid, lipoprotein, and apolipoprotein (a) concentrations: analysis of studies published from 1974–2000. Fertil Steril. 2001;75:898–915.

    Article  CAS  PubMed  Google Scholar 

  35. Anagnostis P, Galanis P, Chatzistergiou V, Stevenson JC, Godsland IF, Lambrinoudaki I, Theodorou M, Goulis DG. The effect of hormone replacement therapy and tibolone on lipoprotein (a) concentrations in postmenopausal women: a systematic review and meta-analysis. Maturitas. 2017;99:27–36.

    Article  CAS  PubMed  Google Scholar 

  36. Kanaya AM, Herrington D, Vittinghoff E, Lin F, Grady D, Bittner V, Cauley JA, Barrett-Connor E. Glycemic effects of postmenopausal hormone therapy: the heart and estrogen/progestin replacement study: a randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2003;138:1–9.

    Article  CAS  PubMed  Google Scholar 

  37. Margolis KL, Bonds DE, Rodabough RJ, Tinker L, Phillips LS, Allen C, Bassford T, Burke G, Torrens J, Howard BV. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia. 2004;47:1175–87.

    Article  CAS  PubMed  Google Scholar 

  38. Manson JAE, Rimm EB, Colditz GA, Willett WC, Nathan DM, Arky RA, Rosner B, Hennekens CH, Speizer FE, Stampfer MJ. A prospective study of postmenopausal estrogen therapy and subsequent incidence of non-insulin-dependent diabetes mellitus. Ann Epidemiol. 1992;2:665–73.

    Article  CAS  PubMed  Google Scholar 

  39. Islam RM, Bell RJ, Green S, Page MJ, Davis SR. Safety and efficacy of testosterone for women: a systematic review and meta-analysis of randomised controlled trial data. Lancet Diabetes Endocrinol. 2019;7:754–66.

    Article  CAS  PubMed  Google Scholar 

  40. Filipsson H, Monson JP, Koltowska-Häggström M, Mattsson A, Johannsson G. The impact of glucocorticoid replacement regimens on metabolic outcome and comorbidity in hypopituitary patients. J Clin Endocrinol Metab. 2006;91:3954–61.

    Article  CAS  PubMed  Google Scholar 

  41. Bannon CA, Gallacher D, Hanson P, Randeva HS, Weickert MO, Barber TM. Systematic review and meta-analysis of the metabolic effects of modified-release hydrocortisone versus standard glucocorticoid replacement therapy in adults with adrenal insufficiency. Clin Endocrinol. 2020;93:637–51.

    Article  CAS  Google Scholar 

  42. Wei L, MacDonald TM, Walker BR. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann Intern Med. 2004;141:764–70.

    Article  PubMed  Google Scholar 

  43. Fleseriu M, Hashim IA, Karavitaki N, Melmed S, Murad MH, Salvatori R, Samuels MH. Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:3888–921.

    Article  CAS  PubMed  Google Scholar 

  44. Rahvar AH, Haas CS, Danneberg S, Harbeck B. Increased cardiovascular risk in patients with adrenal insufficiency: a short review. Biomed Res Int. 2017. https://doi.org/10.1155/2017/3691913.

  45. Graziadio C, Hasenmajer V, Venneri MA, Gianfrilli D, Isidori AM, Sbardella E. Glycometabolic alterations in secondary adrenal insufficiency: does replacement therapy play a role? Front Endocrinol (Lausanne). 2018;9:434.

    Article  Google Scholar 

  46. Amin A, Sam AH, Meeran K. Glucocorticoid replacement: pending further studies of new agents, the old treatments are still the best. BMJ. 2014. https://doi.org/10.1136/bmj.g4843.

  47. Kerrigan JR, Veldhuis JD, Leyo SA, Iranmanesh A, Rogol AD. Estimation of daily cortisol production and clearance rates in normal pubertal males by deconvolution analysis. J Clin Endocrinol Metab. 1993;76:1505–10.

    CAS  PubMed  Google Scholar 

  48. Esteban NV, Loughlin T, Yergey AL, Zawadzki JK, Booth JD, Winterer JC, Loriaux DL. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry. J Clin Endocrinol Metab. 1991;72:39–45.

    Article  CAS  PubMed  Google Scholar 

  49. Johannsson G, Falorni A, Skrtic S, Lennernäs H, Quinkler M, Monson JP, Stewart PM. Adrenal insufficiency: review of clinical outcomes with current glucocorticoid replacement therapy. Clin Endocrinol. 2015;82:2–11.

    Article  CAS  Google Scholar 

  50. Persani L, Brabant G, Dattani M, Bonomi M, Feldt-Rasmussen U, Fliers E, Gruters A, Maiter D, Schoenmakers N, Paul Van Trotsenburg AS. 2018 European Thyroid Association (ETA) guidelines on the diagnosis and management of central hypothyroidism. Eur Thyroid J. 2018;7:225–37.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sbardella E, Pozza C, Isidori AM, Grossman AB. Dealing with transition in young patients with pituitary disorders. Eur J Endocrinol. 2019;181:R155–71.

    Article  CAS  PubMed  Google Scholar 

  52. Alexandraki K, Grossman A. Management of hypopituitarism. J Clin Med. 2019;8:2153.

    Article  CAS  PubMed Central  Google Scholar 

  53. Pabbidi MR, Kuppusamy M, Didion SP, Sanapureddy P, Reed JT, Sontakke SP. Sex differences in the vascular function and related mechanisms: role of 17β-estradiol. Am J Physiol Heart Circ Physiol. 2018;315:H1499–518.

    Article  CAS  PubMed  Google Scholar 

  54. Davis SR, Baber R, Panay N, et al. Global consensus position statement on the use of testosterone therapy for women. J Sex Med. 2019;16:1331–7.

    Article  PubMed  Google Scholar 

  55. Nguyen CP, Hirsch MS, Moeny D, Kaul S, Mohamoud M, Joffe HV. Testosterone and age-related hypogonadism: FDA concerns. N Engl J Med. 2015;373:689–91.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Vance ML. Evaluation and treatment of adult growth hormone deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1587–609.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley Grossman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armeni, E., Grossman, A. (2022). Minimising Cardiometabolic Risk Factors in Patients with Hypopituitarism. In: Samson, S.L., Ioachimescu, A.G. (eds) Pituitary Disorders throughout the Life Cycle. Springer, Cham. https://doi.org/10.1007/978-3-030-99918-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99918-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99917-9

  • Online ISBN: 978-3-030-99918-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics