Skip to main content

Advertisement

SpringerLink
Go to cart
Book cover

International Conference on Foundations of Software Science and Computation Structures

FoSSaCS 2022: Foundations of Software Science and Computation Structures pp 305–324Cite as

  1. Home
  2. Foundations of Software Science and Computation Structures
  3. Conference paper
Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy

  • Raul Fervari  ORCID: orcid.org/0000-0003-0360-072510 &
  • Alessio Mansutti  ORCID: orcid.org/0000-0002-1104-729911 
  • Conference paper
  • Open Access
  • First Online: 29 March 2022
  • 1369 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13242)

Abstract

We study a family of modal logics interpreted on tree-like structures, and featuring local quantifiers \(\exists ^{k}p\) that bind the proposition p to worlds that are accessible from the current one in at most k steps. We consider a first-order and a second-order semantics for the quantifiers, which enables us to relate several well-known formalisms, such as hybrid logics, \(\textsf {S5Q}\) and graded modal logic. To better stress these connections, we explore fragments of our logics, called herein round-bounded fragments. Depending on whether first or second-order semantics is considered, these fragments populate the hierarchy \({2\textsc {NExp} \subset 3\textsc {NExp} \subset \cdots }\) or the hierarchy \({2\textsc {AExp}_{pol} \subset 3\textsc {AExp}_{pol} \subset \cdots }\), respectively. For formulae up-to modal depth k, the complexity improves by one exponential.

Download conference paper PDF

References

  1. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)

    Google Scholar 

  2. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation and complexity. The Journal of Symbolic Logic 66(3), 977–1010 (2001)

    Google Scholar 

  3. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic, Studies in logic and practical reasoning, vol. 3, pp. 821–868. North-Holland (2007)

    Google Scholar 

  4. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic Journal of the IGPL 23(4), 601–627 (2015)

    Google Scholar 

  5. Barnaba, M.F., Caro, F.D.: Graded modalities. Studia Logica 44(2), 197–221 (1985)

    Google Scholar 

  6. Bednarczyk, B., Demri, S.: Why propositional quantification makes modal logics on trees robustly hard? In: Logic in Computer Science. pp. 1–13. IEEE (2019)

    Google Scholar 

  7. Bednarczyk, B., Demri, S., Fervari, R., Mansutti, A.: Modal logics with composition on finite forests: Expressivity and complexity. In: Logic in Computer Science. pp. 167–180. ACM (2020)

    Google Scholar 

  8. van Benthem, J.: An essay on sabotage and obstruction. In: Mechanizing Mathematical Reasoning. LNCS, vol. 2605, pp. 268–276 (2005)

    Google Scholar 

  9. Blackburn, P., Braüner, T., Kofod, J.: Remarks on Hybrid Modal Logic with Propositional Quantifiers, pp. 401–426. No. 4 in Logic and Philosophy of Time (2020)

    Google Scholar 

  10. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics, Studies in logic and practical reasoning, vol. 3. Elsevier (2006)

    Google Scholar 

  11. Bozzelli, L., Molinari, A., Montanari, A., Peron, A.: On the complexity of model checking for syntactically maximal fragments of the interval temporal logic HS with regular expressions. In: GandALF’17. EPTCS, vol. 256, pp. 31–45 (2017)

    Google Scholar 

  12. Bull, R.A.: On modal logic with propositional quantifiers. The Journal of Symbolic Logic 34(2), 257–263 (1969)

    Google Scholar 

  13. Calcagno, C., Cardelli, L., Gordon, A.: Deciding validity in a spatial logic for trees. In: International Workshop on Types in Languages Design and Implementation. pp. 62–73. ACM (2003)

    Google Scholar 

  14. ten Cate, B., Franceschet, M.: On the complexity of hybrid logics with binders. In: Ong, L. (ed.) Computer Science Logic. pp. 339–354 (2005)

    Google Scholar 

  15. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)

    Google Scholar 

  16. Demri, S., Fervari, R.: The power of modal separation logics. Journal of Logic and Computation 29(8), 1139–1184 (2019)

    Google Scholar 

  17. Ding, Y.: On the logics with propositional quantifiers extending s5\(\varPi \). In: Advances in Modal Logic. pp. 219–235. College Publications (2018)

    Google Scholar 

  18. Fine, K.: Propositional quantifiers in modal logic. Theoria 36, 336–346 (1970)

    Google Scholar 

  19. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: ACM Symposium on Theory of Computing. p. 286–294 (1977)

    Google Scholar 

  20. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of presburger arithmetic. In: Complexity of Computation, SIAM–AMS Proceedings. pp. 27–41 (1974)

    Google Scholar 

  21. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional logics in team semantic. ACM Transactions on Computational Logic 19(1), 2:1–2:14 (2018)

    Google Scholar 

  22. Kaplan, D.: S5 with quantifiable propositional variables. The Journal of Symbolic Logic 35(2),  355 (1970)

    Google Scholar 

  23. Mansutti, A.: Reasoning with Separation Logics: Complexity, Expressive Power, Proof Systems. Ph.D. thesis, Université Paris-Saclay (December 2020)

    Google Scholar 

  24. Mansutti, A.: Notes on kAExp(pol) problems for deterministic machines (2021)

    Google Scholar 

  25. Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: The complexity of satisfiability for fragments of CTL and CTL*. Electronic Notes in Theoretical Computer Science 223, 201–213 (2008)

    Google Scholar 

  26. Prior, A.: Past, Present and Future. Oxford Books (1967)

    Google Scholar 

  27. Rabin, M.: Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society 41, 1–35 (1969)

    Google Scholar 

  28. de Rijke, M.: A note on graded modal logic. Studia Logica 64(2), 271–283 (2000)

    Google Scholar 

  29. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Transactions on Computation Theory 8(1), 3:1–3:36 (2016)

    Google Scholar 

  30. Schneider, T.: The complexity of hybrid logics over restricted frame classes. Ph.D. thesis, Friedrich Schiller University of Jena (2007)

    Google Scholar 

  31. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of the ACM 32(3), 733–749 (1985)

    Google Scholar 

  32. Yang, F., Väänänen, J.: Propositional logics of dependence. Annals of Pure and Applied Logic 167(7), 557–589 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina

    Raul Fervari

  2. Department of Computer Science, University of Oxford, Parks Rd, Oxford, OX1 3QD, UK

    Alessio Mansutti

Authors
  1. Raul Fervari
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alessio Mansutti
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alessio Mansutti .

Editor information

Editors and Affiliations

  1. Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France

    Prof. Patricia Bouyer

  2. Friedrich-Alexander-Universität Erlangen, Erlangen, Germany

    Lutz Schröder

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2022 The Author(s)

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fervari, R., Mansutti, A. (2022). Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy. In: Bouyer, P., Schröder, L. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2022. Lecture Notes in Computer Science, vol 13242. Springer, Cham. https://doi.org/10.1007/978-3-030-99253-8_16

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-030-99253-8_16

  • Published: 29 March 2022

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99252-1

  • Online ISBN: 978-3-030-99253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The European Joint Conferences on Theory and Practice of Software.

    Published in cooperation with

    http://www.etaps.org/

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.