Skip to main content

3D Printing—A Way Forward

  • Chapter
  • First Online:
Dental Implants and Oral Microbiome Dysbiosis

Abstract

3D Printing has become the go-to term when newer advances in medical and dental healthcare sectors are discussed in any manner. The term has become associated with futuristic technology which will revolutionise the medical and dental healthcare industry. 3D printing, however, has been functional since the 1980s, hitherto known as rapid prototyping, and has already been adopted by many industries as a cost-effective manufacturing technology. There are, however, many drawbacks to the method, which are yet to be resolved to achieve universal adoption. This chapter aims to provide an overview of the 3D printing process and the various techniques involved in a concise, descriptive manner. It should be pointed out that 3D printing for commercial healthcare has only been available for the past few years with a slow adoption rate and long-term clinical results are yet to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521–9.

    Article  PubMed  Google Scholar 

  2. Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: a systematic review of restorative material and fabrication techniques. J Prosthet Dent. 2018;119(4):545–51.

    Article  PubMed  Google Scholar 

  3. 3Shape software—Dental CAD/CAM solutions for labs and clinics [Internet]. 3Shape. [cited 2021 Oct 5]. Available from: https://www.3shape.com/en/software-overview

  4. 3D Slicer image computing platform [Internet]. 3D Slicer. [cited 2021 Oct 5]. Available from: https://slicer.org/.

  5. Carina. exocad DentalCAD—exocad [Internet]. [cited 2021 Oct 5]. Available from: https://exocad.com/our-products/exocad-dentalcad.

  6. Digital Dentistry Software [Internet]. Blenderfordental. [cited 2021 Oct 5]. Available from: https://www.blenderfordental.com

  7. Design with CEREC | Dentsply Sirona [Internet]. [cited 2021 Oct 5]. Available from: https://www.dentsplysirona.com/en-nz/categories/cerec/design-with-cerec.html.

  8. Alghazzawi TF. Advancements in CAD/CAM technology: options for practical implementation. J Prosthodont Res. 2016;60(2):72–84.

    Article  PubMed  Google Scholar 

  9. No-Cortes J, Ayres AP, Lima JF, Markarian RA, Attard NJ, Cortes ARG. Trueness, 3D deviation, time and cost comparisons between milled and 3D-printed resin single crowns. Eur J Prosthodont Restor Dent. 2021;

    Google Scholar 

  10. The most common 3D file formats [Internet]. All3DP. 2019 [cited 2021 Oct 5]. Available from: https://all3dp.com/3d-file-format-3d-files-3d-printer-3d-cad-vrml-stl-obj/.

  11. Professional 3D printing made accessible | Ultimaker [Internet]. ultimaker.com. [cited 2021 Oct 5]. Available from: https://ultimaker.com/.

  12. Netfabb features | Fusion 360 with Netfabb | Autodesk [Internet]. [cited 2021 Oct 5]. Available from: https://www.autodesk.com/products/netfabb/features.

  13. PreForm 3D printing software: prepare your models for printing [Internet]. Formlabs. [cited 2021 Oct 5]. Available from: https://formlabs.com/asia/software/.

  14. Getting started 3D sprint [Internet]. [cited 2021 Oct 5]. Available from: https://support.3dsystems.com/s/article/3D-Sprint?language=en_US.

  15. Timeline of the 3D printing history—ASME [Internet]. [cited 2021 Oct 5]. Available from: https://www.asme.org/topics-resources/content/infographic-the-history-of-3d-printing.

  16. History of 3D printing: when was 3D printing invented? [Internet]. All3DP. 2018 [cited 2021 Oct 5]. Available from: https://all3dp.com/2/history-of-3d-printing-when-was-3d-printing-invented/.

  17. ISO/ASTM 52900:2015(en), Additive manufacturing—General principles—Terminology [Internet]. [cited 2021 May 2]. Available from: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en.

  18. Directed energy deposition—DED, LENS, EBAM | Make [Internet]. [cited 2021 Oct 5]. Available from: https://make.3dexperience.3ds.com/processes/directed-energy-deposition.

  19. Anderson T. Anatomy of a 3D printer: how does a 3D printer work? [Internet]. MatterHackers. [cited 2021 Oct 5]. Available from: https://www.matterhackers.com/articles/anatomy-of-a-3d-printer.

  20. Jiang Z, Diggle B, Tan ML, Viktorova J, Bennett CW, Connal LA. Extrusion 3D printing of polymeric materials with advanced properties. Adv Sci. 2020;7(17):2001379.

    Article  Google Scholar 

  21. Placone JK, Engler AJ. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthc Mater. 2018;7(8):e1701161.

    Article  PubMed  Google Scholar 

  22. Copper 3D | Antibacterial 3D printing—Home [Internet]. Copper 3D | Antibacterial 3D printing. [cited 2021 Oct 5]. Available from: https://copper3d.com/.

  23. Antimicrobial materials for 3D printing medical devices [Internet]. 3DHeals. 2020 [cited 2021 Oct 5]. Available from: https://3dheals.com/antimicrobial-materials-for-3d-printing-medical-devices.

  24. Gonzalez-Gutierrez J, Cano S, Schuschnigg S, Kukla C, Sapkota J, Holzer C. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials (Basel). 2018;11(5):E840.

    Article  Google Scholar 

  25. ExplainingTheFuture.com: 3D printing—Third Edition [Internet]. [cited 2021 May 2]. Available from: https://www.explainingthefuture.com/3dp3e.html.

  26. Della Bona A, Cantelli V, Britto VT, Collares KF, Stansbury JW. 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater. 2021;37(2):336–50.

    Article  PubMed  Google Scholar 

  27. Carbon3D introduces CLIP, breakthrough technology for layerless 3D printing [Internet]. Carbon. [cited 2021 Oct 5]. Available from: https://www.carbon3d.com/news/press-releases/carbon3d-introduces-clip-breakthrough-technology-for-layerless-3d-printing/.

  28. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci. 2019;135:60–7.

    Article  PubMed  Google Scholar 

  29. Mayer F, Ryklin D, Wacker I, Curticean R, Čalkovský M, Niemeyer A, et al. 3D two-photon microprinting of nanoporous architectures. Adv Mater. 2020;32(32):e2002044.

    Article  PubMed  Google Scholar 

  30. Correa DS, Tayalia P, Cosendey G, dos Santos DS, Aroca RF, Mazur E, et al. Two-photon polymerization for fabricating structures containing the biopolymer chitosan. J Nanosci Nanotechnol. 2009;9(10):5845–9.

    Article  PubMed  Google Scholar 

  31. Skoog SA, Nguyen AK, Kumar G, Zheng J, Goering PL, Koroleva A, et al. Two-photon polymerization of 3-D zirconium oxide hybrid scaffolds for long-term stem cell growth. Biointerphases. 2014;9(2):029014.

    Article  PubMed  Google Scholar 

  32. Bai Y, Williams CB. The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing. Nanotechnology. 2018;29(39):395706.

    Article  PubMed  Google Scholar 

  33. Gülcan O, Günaydın K, Tamer A. The state of the art of material jetting-a critical review. Polymers. 2021;13(16):2829.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hong D, Chou D-T, Velikokhatnyi OI, Roy A, Lee B, Swink I, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater. 2016;45:375–86.

    Article  PubMed  Google Scholar 

  35. Meenashisundaram GK, Xu Z, Nai MLS, Lu S, Ten JS, Wei J. Binder jetting additive manufacturing of high porosity 316L stainless steel metal foams. Materials (Basel). 2020;13(17):E3744.

    Article  Google Scholar 

  36. Na O, Kim K, Lee H, Lee H. Printability and setting time of CSA cement with Na2SiO3 and gypsum for binder jetting 3D printing. Materials (Basel). 2021;14(11):2811.

    Article  Google Scholar 

  37. Păcurar R, Berce P, Nemeş O, Băilă D-I, Stan DS, Oarcea A, et al. Cast iron parts obtained in ceramic molds produced by binder jetting 3D printing-morphological and mechanical characterization. Materials (Basel). 2021;14(16):4502.

    Article  Google Scholar 

  38. Goguta L, Lungeanu D, Negru R, Birdeanu M, Jivanescu A, Sinescu C. Selective laser sintering versus selective laser melting and computer aided design–computer aided manufacturing in double crowns retention. J Prosthodont Res. 2021;65(3):371–8.

    Article  PubMed  Google Scholar 

  39. Wang Z, Ummethala R, Singh N, Tang S, Suryanarayana C, Eckert J, et al. Selective laser melting of aluminum and its alloys. Materials (Basel). 2020;13(20):E4564.

    Article  Google Scholar 

  40. Bartolomeu F, Costa MM, Alves N, Miranda G, Silva FS. Selective laser melting of Ti6Al4V sub-millimetric cellular structures: prediction of dimensional deviations and mechanical performance. J Mech Behav Biomed Mater. 2021;113:104123.

    Article  PubMed  Google Scholar 

  41. Bulina NV, Baev SG, Makarova SV, Vorobyev AM, Titkov AI, Bessmeltsev VP, et al. Selective laser melting of hydroxyapatite: perspectives for 3D printing of bioresorbable ceramic implants. Materials (Basel). 2021;14(18):5425.

    Article  Google Scholar 

  42. Jamshidi P, Aristizabal M, Kong W, Villapun V, Cox SC, Grover LM, et al. Selective laser melting of Ti-6Al-4V: the Impact of post-processing on the tensile, fatigue and biological properties for medical implant applications. Materials (Basel). 2020;13(12):E2813.

    Article  Google Scholar 

  43. Ginestra P, Ferraro RM, Zohar-Hauber K, Abeni A, Giliani S, Ceretti E. Selective laser melting and electron beam melting of Ti6Al4V for orthopedic applications: a comparative study on the applied building direction. Materials (Basel). 2020;13(23):E5584.

    Article  Google Scholar 

  44. Galati M, Minetola P, Rizza G. Surface roughness characterisation and analysis of the electron beam melting (EBM) process. Materials (Basel). 2019;12(13):E2211.

    Article  Google Scholar 

  45. Tamayo JA, Riascos M, Vargas CA, Baena LM. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon. 2021;7(5):e06892.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Benedetti M, Torresani E, Leoni M, Fontanari V, Bandini M, Pederzolli C, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater. 2017;71:295–306.

    Article  PubMed  Google Scholar 

  47. Directed energy deposition—an overview | ScienceDirect Topics [Internet]. [cited 2021 Oct 5]. Available from: https://www.sciencedirect.com/topics/materials-science/directed-energy-deposition.

  48. Tao Y, Yin Q, Li P. An additive manufacturing method using large-scale wood inspired by laminated object manufacturing and plywood technology. Polymers. 2020;13(1):E144.

    Article  PubMed  Google Scholar 

  49. Tanabe G, Churei H, Wada T, Takahashi H, Uo M, Ueno T. The influence of temperature on sheet lamination process when fabricating mouthguard on dental thermoforming machine. J Oral Sci. 2020;62(1):23–7.

    Article  PubMed  Google Scholar 

  50. AM 101: Ultrasonic Additive Manufacturing | Additive Manufacturing [Internet]. [cited 2021 Oct 5]. Available from: https://www.additivemanufacturing.media/articles/am-101-ultrasonic-additive-manufacturing.

  51. Bournias-Varotsis A, Friel RJ, Harris RA, Engstrøm DS. Ultrasonic Additive Manufacturing as a form-then-bond process for embedding electronic circuitry into a metal matrix. J Manuf Process. 2018;32:664–75.

    Article  Google Scholar 

  52. Zeller A-N, Neuhaus M-T, Fresenborg S, Zimmerer RM, Jehn P, Spalthoff S, et al. Accurate and cost-effective mandibular biomodels: a standardized evaluation of 3D-Printing via fused layer deposition modeling on soluble support structures. J Stomatol Oral Maxillofac Surg. 2021;122(4):355–60.

    Article  PubMed  Google Scholar 

  53. Guide to post-processing and finishing SLA 3D prints [Internet]. [cited 2021 Oct 5]. Available from: https://formlabs.com/asia/blog/post-processing-and-finishing-sla-prints/.

  54. 3D print post processing—ultimate guide—16 ways [Internet]. [cited 2021 Oct 5]. Available from: https://bigrep.com/post-processing/.

  55. Chandki R, Kala M. Natural tooth versus implant: a key to treatment planning. J Oral Implantol. 2012;38(1):95–100.

    Article  PubMed  Google Scholar 

  56. Pjetursson BE, Heimisdottir K. Dental implants—are they better than natural teeth? Eur J Oral Sci. 2018;126(Suppl 1):81–7.

    Article  PubMed  Google Scholar 

  57. Londono J, Tadros M, Salgueiro M, Baker PS. Digital design and 3D printing of an implant-supported prosthetic stent for protecting complete arch soft tissue grafts around dental implants: a dental technique. J Prosthet Dent. 2018;120(6):801–4.

    Article  PubMed  Google Scholar 

  58. Kim T, Lee S, Kim GB, Hong D, Kwon J, Park J-W, et al. Accuracy of a simplified 3D-printed implant surgical guide. J Prosthet Dent. 2020;124(2):195–201.e2.

    Article  PubMed  Google Scholar 

  59. Yeung M, Abdulmajeed A, Carrico CK, Deeb GR, Bencharit S. Accuracy and precision of 3D-printed implant surgical guides with different implant systems: an in vitro study. J Prosthet Dent. 2020;123(6):821–8.

    Article  PubMed  Google Scholar 

  60. Dong T, Wang X, Xia L, Yuan L, Ye N, Fang B. Accuracy of different tooth surfaces on 3D printed dental models: orthodontic perspective. BMC Oral Health. 2020;20(1):340.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Maria R, Tan MY, Wong KM, Lee BCH, Chia VAP, Tan KBC. Accuracy of implant analogs in 3D printed resin models. J Prosthodont. 2021;30(1):57–64.

    Article  PubMed  Google Scholar 

  62. Rungrojwittayakul O, Kan JY, Shiozaki K, Swamidass RS, Goodacre BJ, Goodacre CJ, et al. Accuracy of 3D printed models created by two technologies of printers with different designs of model base. J Prosthodont. 2020;29(2):124–8.

    Article  PubMed  Google Scholar 

  63. Sherman SL, Kadioglu O, Currier GF, Kierl JP, Li J. Accuracy of digital light processing printing of 3-dimensional dental models. Am J Orthod Dentofac Orthop. 2020;157(3):422–8.

    Article  Google Scholar 

  64. Chaturvedi S, Alqahtani NM, Addas MK, Alfarsi MA. Marginal and internal fit of provisional crowns fabricated using 3D printing technology. Technol Health Care. 2020;28(6):635–42.

    Article  PubMed  Google Scholar 

  65. Mai H-N, Lee K-B, Lee D-H. Fit of interim crowns fabricated using photopolymer-jetting 3D printing. J Prosthet Dent. 2017;118(2):208–15.

    Article  PubMed  Google Scholar 

  66. Zimmermann M, Ender A, Egli G, Özcan M, Mehl A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin Oral Investig. 2019;23(6):2777–84.

    Article  PubMed  Google Scholar 

  67. Methani MM, Revilla-León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: a review. J Esthet Restor Dent. 2020;32(2):182–92.

    Article  PubMed  Google Scholar 

  68. Matinlinna JP, Choi AH, Tsoi JK-H. Bonding promotion of resin composite to silica-coated zirconia implant surface using a novel silane system. Clin Oral Implants Res. 2013;24(3):290–6.

    Article  PubMed  Google Scholar 

  69. Han A, Tsoi JK-H, Matinlinna JP, Chen Z. Influence of grit-blasting and hydrofluoric acid etching treatment on surface characteristics and biofilm formation on zirconia. Coatings. 2017;7(8):130.

    Article  Google Scholar 

  70. Han A, Tsoi JKH, Matinlinna JP, Zhang Y, Chen Z. Effects of different sterilization methods on surface characteristics and biofilm formation on zirconia in vitro. Dent Mater. 2018;34(2):272–81.

    Article  PubMed  Google Scholar 

  71. Dehurtevent M, Robberecht L, Hornez J-C, Thuault A, Deveaux E, Béhin P. Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater. 2017;33(5):477–85.

    Article  PubMed  Google Scholar 

  72. Control of the cross section geometry of extruded dental porcelain slurries for rapid prototyping applications [Internet]. [cited 2021 Oct 5]. Available from: https://repositories.lib.utexas.edu/handle/2152/78543.

  73. Tai J, Gan HY, Liang YN, Lok BK.. Control of droplet formation in inkjet printing Using Ohnesorge number category: materials and processes. In: 2008 10th Electronics packaging technology conference. 2008. p. 761–6.

    Google Scholar 

  74. Edelmann A, Riedel L, Hellmann R. Realization of a dental framework by 3D printing in material cobalt-chromium with superior precision and fitting accuracy. Materials (Basel). 2020;13(23):E5390.

    Article  Google Scholar 

  75. Revilla León M, Klemm IM, García-Arranz J, Özcan M. 3D metal printing—additive manufacturing technologies for frameworks of implant-borne fixed dental prosthesis. Eur J Prosthodont Restor Dent. 2017;25(3):143–7.

    PubMed  Google Scholar 

  76. Presotto AGC, Barão VAR, Bhering CLB, Mesquita MF. Dimensional precision of implant-supported frameworks fabricated by 3D printing. J Prosthet Dent. 2019;122(1):38–45.

    Article  PubMed  Google Scholar 

  77. Thakur J, Parlani S, Shivakumar S, Jajoo K. Accuracy of marginal fit of an implant-supported framework fabricated by 3D printing versus subtractive manufacturing technique: a systematic review and meta-analysis. J Prosthet Dent. 2021;S0022-3913(21):00274–2.

    Google Scholar 

  78. Sumida T, Otawa N, Kamata YU, Kamakura S, Mtsushita T, Kitagaki H, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh. J Craniomaxillofac Surg. 2015;43(10):2183–8.

    Article  PubMed  Google Scholar 

  79. Inoue K, Nakajima Y, Omori M, Suwa Y, Kato-Kogoe N, Yamamoto K, et al. Reconstruction of the alveolar bone using bone augmentation with selective laser melting titanium mesh sheet: a report of 2 cases. Implant Dent. 2018;27(5):602–7.

    Article  PubMed  Google Scholar 

  80. Surovas A. A digital workflow for modeling of custom dental implants. 3D Print Med. 2019;5(1):9.

    Google Scholar 

  81. Westover B. Three-dimensional custom-root replicate tooth dental implants. Oral Maxillofac Surg Clin N Am. 2019;31(3):489–96.

    Article  Google Scholar 

  82. Matinlinna JP, Tsoi JK-H, de Vries J, Busscher HJ. Characterization of novel silane coatings on titanium implant surfaces. Clin Oral Implants Res. 2013;24(6):688–97.

    Article  PubMed  Google Scholar 

  83. Villard N, Seneviratne C, Tsoi JKH, Heinonen M, Matinlinna J. Candida albicans aspects of novel silane system-coated titanium and zirconia implant surfaces. Clin Oral Implants Res. 2015;26(3):332–41.

    Article  PubMed  Google Scholar 

  84. Alcheikh A, Pavon-Djavid G, Helary G, Petite H, Migonney V, Anagnostou F. PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion. J Mater Sci Mater Med. 2013;24(7):1745–54.

    Article  PubMed  Google Scholar 

  85. Divakar DD, Jastaniyah NT, Altamimi HG, Alnakhli YO, Muzaheed n, Alkheraif AA, et al. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens. Int J Biol Macromol. 2018;108:790–7.

    Article  PubMed  Google Scholar 

  86. Kalberer N, Mehl A, Schimmel M, Müller F, Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: an in vitro evaluation of trueness. J Prosthet Dent. 2019;121(4):637–43.

    Article  PubMed  Google Scholar 

  87. Park C, Kee W, Lim H-P, Park S-W. Combining 3D-printed metal and resin for digitally fabricated dentures: a dental technique. J Prosthet Dent. 2020;123(3):389–92.

    Article  PubMed  Google Scholar 

  88. Yoon S-N, Oh KC, Lee SJ, Han J-S, Yoon H-I. Tissue surface adaptation of CAD-CAM maxillary and mandibular complete denture bases manufactured by digital light processing: a clinical study. J Prosthet Dent. 2020;124(6):682–9.

    Article  PubMed  Google Scholar 

  89. Yang Y, Yang Z, Lin W-S, Chen L, Tan J. Digital duplication and 3D printing for implant overdenture fabrication. J Prosthodont. 2021;30(S2):139–42.

    Article  PubMed  Google Scholar 

  90. Prpić V, Schauperl Z, Ćatić A, Dulčić N, Čimić S. Comparison of mechanical properties of 3D-printed, CAD/CAM, and conventional denture base materials. J Prosthodont. 2020;29(6):524–8.

    Article  PubMed  Google Scholar 

  91. Kumar H, Kim K. Stereolithography 3D bioprinting. Methods Mol Biol Clifton NJ. 2020;2140:93–108.

    Article  Google Scholar 

  92. Nakamura M, Ogura R, Yoshiike N, Teraguchi H. Additive organ manufacturing: challenges to produce organs by biomedical engineering. Organ Biol. 2017;24(2):217–22.

    Google Scholar 

  93. Mir TA, Nakamura M. 3D-BioPrinting: towards the era of manufacturing human organs as spare parts for healthcare and medicine. Tissue Eng Part B Rev. 2017;23

    Google Scholar 

  94. Mironov V, Prestwich G, Forgacs G. Bioprinting living structures. J Mater Chem. 2007;17

    Google Scholar 

  95. Organovo: bioprinting tissue to speed up drug development [Internet]. Technology and Operations Management. [cited 2021 Oct 5]. Available from: https://digital.hbs.edu/platform-rctom/submission/organovo-bioprinting-tissue-to-speed-up-drug-development/.

  96. Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, et al. Review of low-cost 3D bioprinters: state of the market and observed future trends. SLAS Technol Transl Life Sci Innov. 2021;26(4):333–66.

    Google Scholar 

  97. Perez-Valle A, Del Amo C, Andia I. Overview of current advances in extrusion bioprinting for skin applications. Int J Mol Sci. 2020;21(18):E6679.

    Article  PubMed  Google Scholar 

  98. O’Connell CD, Konate S, Onofrillo C, Kapsa R, Baker C, Duchi S, et al. Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photo-crosslinking during extrusion. Bioprinting. 2020;19:e00087.

    Article  Google Scholar 

  99. Li L, Tang Q, Wang A, Chen Y. Regrowing a tooth: in vitro and in vivo approaches. Curr Opin Cell Biol. 2019;61:126–31.

    Article  PubMed  Google Scholar 

  100. Capellato P, Camargo SEA, Sachs D. Biological response to nanosurface modification on metallic biomaterials. Curr Osteoporos Rep. 2020;

    Google Scholar 

  101. Kuang X, Wu J, Chen K, Zhao Z, Ding Z, Hu F, et al. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci Adv. 2019;5(5):eaav5790.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Astaneh SH, Faverani LP, Sukotjo C, Takoudis CG. Atomic layer deposition on dental materials: processing conditions and surface functionalization to improve physical, chemical, and clinical properties - a review. Acta Biomater. 2020;

    Google Scholar 

  103. Dutta B, Froes FH. Chapter 3—additive manufacturing technology. In: Dutta B, Froes FH, editors. Additive manufacturing of titanium alloys [Internet]. Butterworth-Heinemann; 2016. [cited 2021 Oct 5]. p. 25–40. Available from: https://www.sciencedirect.com/science/article/pii/B9780128047828000033.

    Google Scholar 

  104. Kim J-H, Kim M-Y, Knowles JC, Choi S, Kang H, Park S-H, et al. Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications. Dent Mater. 2020;36(7):945–58.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors are not affiliated to any of the commercial manufacturers or firms mentioned in this chapter or are sponsored, in any thinkable way, for the active promotion or marketing of any product related to 3D printing.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivaswamy, V., Matinlinna, J.P., Rosa, V., Neelakantan, P. (2022). 3D Printing—A Way Forward. In: Neelakantan, P., Princy Solomon, A. (eds) Dental Implants and Oral Microbiome Dysbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-99014-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99014-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99013-8

  • Online ISBN: 978-3-030-99014-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics