Skip to main content

Materials for Membranophones—Timpani, Drums, Tambourine

  • Chapter
  • First Online:
Handbook of Materials for Percussion Musical Instruments
  • 480 Accesses

Abstract

In this chapter our attention is focused on the following instruments: timpani, snare drum, bass drum, and tambourine. These membranophone instruments are of definite pitch like the timpani, and drums of indefinite pitch like the snare drum, the bass drum, and the tambourine. These drums produce sounds by the vibration of a stretched membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RD (1972) The damping characteristics of certain steels, cast irons and other metals. J Sound Vibr 23(2):199–216

    Article  ADS  Google Scholar 

  • Ashby MF (2005) Materials selection in mechanical design, 3rd edn. Butterworth-Heinemann, Amsterdam

    Google Scholar 

  • Azzarto F (2010) What you need to know about drumheads. Modern Drummer. https://www.moderndrummer.com/2011/10/what-you-need-to-know-about-drumheads/

  • Benade A (1976) Fundamentals of musical acoustics. Oxford University Press, New York

    Google Scholar 

  • Benitez AJ, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5(31):16003–16024. https://doi.org/10.1039/C7TA02006F

    Article  Google Scholar 

  • Bert CW (1973) Material damping: an introductory review of mathematic measures and experimental techniques. J Sound Vibr 29(2):129–153

    Article  ADS  MathSciNet  Google Scholar 

  • Blades J (1974) Percussion instruments and their story. Faber and Faber, London

    Google Scholar 

  • Blades J (1972) The tambourine in “Percussion instruments and their history”. Faber, London, pp 385–386

    Google Scholar 

  • Blanter MS, Golovin IS, Neuhauser H, Sinning HR (2007) Internal friction in metallic materials. Springer, A Handbook

    Book  Google Scholar 

  • Bloss B, Rao MD (2002) Measurements of damping in structures by the power input method. Exp Tech 26(3):30–32

    Article  Google Scholar 

  • Brensilver DA (2015) History of the snare drum: eight centuries of innovation & ingenuity https://drummagazine.com/history-of-the-snare-drum/. Accessed 1 Aug 2019

  • Burtin P, Jay-Allemand C, Charpentier JP, Janin G (2000) Modifications of hybrid walnut (Juglans nigra 23 Ă— Juglans regia) wood colour and phenolic composition under various steaming conditions. Holzforschung 54(1):33–38

    Article  Google Scholar 

  • Chevalier Y, Vinh JT (eds) (2010) Mechanical characterization of materials and wave dispersion. Wiley

    Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    Article  Google Scholar 

  • Dunmade IS (2013) Environmental profile assessment of a plastic framed tambourine musical instrument–a lifecycle approach. Resour Environ 3(5):129–134

    Google Scholar 

  • Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. BioResources 4(1):370–404

    Article  Google Scholar 

  • Evans R (1999) A variance approach to the X-ray diffractometric estimation of microfibril angle in wood. Appita J 52:283–294

    Google Scholar 

  • Evans R, Hughes M, Menz D (1999) Microfibril angle variation by scanning X-ray diffractometry. Appita J 52:363–367

    Google Scholar 

  • Fengel D, Wegner G (1984) Wood: chemistry, ultra structure, and reactions. De Gruyter, New York

    Google Scholar 

  • Fleischer H (1988) Die Pauke. Mechanischer Schwinger und akustiche Strahler. Univ, Bundeswehs, Munich, Germany

    Google Scholar 

  • Fletcher NH, Rossing TD (2010) Physics of musical instruments. Springer

    MATH  Google Scholar 

  • Giebeler E (1983) Dimensional stabilization of wood by moisture-heat-pressure. Holz Roh-Werkst 41:87–94

    Article  Google Scholar 

  • Grover N, Whaley G (2000) The art of tambourine and triangle playing. Hal Leonard Corporation, USA

    Google Scholar 

  • Guo J, Rennhofer H, Yin Y, Lichtenegger HC (2016) The influence of thermo-hygro-mechanical treatment on the micro-and nanoscale architecture of wood cell walls using small-and wide-angle X-ray scattering. Cellulose 23(4):2325–2340

    Article  Google Scholar 

  • Haynes WM (ed) (2014) CRC handbook of chemistry and physics. CRC Press. Bocca Raton 99th edition

    Google Scholar 

  • Hillis WE (1984) High temperature and chemical effects on wood stability. Wood Sci Technol 18:281–293

    Article  Google Scholar 

  • Jeswiet J, Hagan E (2003) A review of conventional and modern single point sheet metal forming methods. Proc Inst Mech Eng Part B J Eng Manuf 217:213–225

    Google Scholar 

  • Kirby PR (1930) The kettle-drums: a book for composers, conductors and kettle-drummers. Oxford University Press

    Google Scholar 

  • Vienna Symphonic Library (n.d). https://www.vsl.co.at/en/Snare_drum/Brief_Description/

  • Manniche L (1973) Rare fragments of a round tambourine in the Ashmolean Museum, Oxford. Acta Orientalis 29–36

    Google Scholar 

  • Marin J (1962) Mechanical behaviour of engineering materials. Prentice Hall International, pp 272–289

    Google Scholar 

  • Miller R (2017) Drum design knowledge. Part 2 Shell types and thickness https://www.moderndrummer.com/article/december-2017-drum-design-knowledge-part-2-shell-types-and-thicknesses/

  • Montagu J (2002) Timpani and percussion. Yale University Press, New haven

    Google Scholar 

  • Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping. Wiley & Sons, Inc., New York

    Google Scholar 

  • Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3):287–293

    Article  Google Scholar 

  • Navi P, Sandberg D (2012) Thermo-hydro-mechanical wood processing. CRC Press

    Book  Google Scholar 

  • Nishimura H, Kamiya A, Nagata T et al (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep 8:6538. https://doi.org/10.1038/s41598-018-24328-9

    Article  ADS  Google Scholar 

  • Norwick AS (1958) On the interpretation of low temperature recovery, phenomena in cold worked metals. Acta Metalurgica 3(4):312–321

    Article  Google Scholar 

  • Popescu MC, Lisa G, Froidevaux J, Navi P, Popescu CM (2014) Evaluation of the thermal stability and set recovery of thermo-hydro-mechanically treated lime (Tilia cordata) wood. Wood Sci, Techn 48(1):85–97

    Article  Google Scholar 

  • Puskar A (2001) Internal friction of materials. Publ, Cambridge Int, Sci

    Google Scholar 

  • Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J R Soc Interface 11(95):20140126

    Article  Google Scholar 

  • Rossing TD (2001) Acoustics of percussion instruments: recent progress. Acoust Sci Technol 22(3):177–188

    Article  Google Scholar 

  • Rossing TD, Fletrcher NH (1995) Principles of vibration and sound. Springer, New York

    Book  Google Scholar 

  • Rossing TD, Bork I, Zhao H, Fystom DO (1992) Acoustics of snare drum. JASA 92:84–94

    Google Scholar 

  • Rossing TD (2000) Science of percussion instruments. World Scientific Singapore

    Google Scholar 

  • Schneider A (2013) Drum care: a quick snare wire change https://drummagazine.com/drum-care-a-quick-snare-wire-change/. Accessed 30 June 2020

  • Siswanto WA, Abdullah MS, Darmawan AS (2018) Effect of humidity on the membrane vibration of musical instrument kompang. Int J Mech Eng Tech 9(6):1233–1240

    Google Scholar 

  • Szalai J (1994) Anisotropic elasticity and strength theories of wood and wood-based composites. Part I Anisotropy of the mechanical properties Sopron 152–167

    Google Scholar 

  • Torin A, Newton M (2014) Collisions in drum membranes: a preliminary study on a simplified system. In: Proceedings of the international symposium musical acoustics (ISMA 2014). Le Mans, France, pp 401–406

    Google Scholar 

  • Torin A, Hamilton B, Bilbao S (2014) An energy conserving finite difference scheme for the simulation of collisions in snare drums. In: DAFx, pp 145–152

    Google Scholar 

  • Wheeler MW (1922) Snare for drums. Patent US1431836A

    Google Scholar 

  • Yin J, Yuan T, Lu Y, Song K, Li H, Zhao G, Yin Y (2017) Effect of compression combined with steam treatment on the porosity, chemical composition and cellulose crystalline structure of wood cell walls. Carbohyd Polym 155:163–172

    Article  Google Scholar 

  • Zener C (1940) Internal friction in solids. Proc Phys Soc 52(1):152–166

    Article  ADS  Google Scholar 

  • Zener C (1938) Internal friction in solids. IV. Relation between cold work and internal friction. Phys Rev 53(7):582–586

    Google Scholar 

  • Zhao H (1990) Acoustics of snare drum. An experimental study of the modes of vibration, mode coupling and sound radiation patterns. MS thesis, Northern Illinois University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bucur, V. (2022). Materials for Membranophones—Timpani, Drums, Tambourine. In: Handbook of Materials for Percussion Musical Instruments. Springer, Cham. https://doi.org/10.1007/978-3-030-98650-6_5

Download citation

Publish with us

Policies and ethics