Skip to main content

Modes of Action of Probiotics

  • Chapter
  • First Online:
Probiotics in Aquaculture

Abstract

In recent years, technological advances in the microbiology and omics and bioinformatics fields have greatly expanded our understanding of the mechanisms of action of probiotics. However, probiotics seem to work in a strain and host species-dependent fashion, and only a small amount of information on the modes of action of beneficial bacteria used for aquatic animals is available. In this chapter, the mechanisms of action of probiotics will be reviewed; this will include traditional effects, including competitive exclusion of pathogens, increased enzymatic activity, and production of volatile fatty acids, as well as recent findings, such as modulation of immune responses at the molecular level, upregulation of low molecular weight metabolites, and bidirectional communication between the brain and gut. Further research is needed to elucidate the precise molecular mechanisms of action of probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allameh SK, Ringø E, Yusoff FM, Daud HMA, Ideris A (2017) Dietary supplementation of Enterococcus faecalis on digestive enzyme activities, short chain fatty acid production, immune system response and disease resistance of Javanese carp (Puntius gonionotus Bleeker 1850). Aquac Nutr 23(2):331–338

    Article  CAS  Google Scholar 

  • Aly S, Mohamed AAZ, Rahmani AH, Nashwa MAA (2016) Trials to improve the response of Orechromis niloticus to Aeromonas hydrophila vaccine using immunostimulants (garlic, Echinacea) and probiotics (Organic Green TM and Vet-Yeast TM). Afr J Biotech 15(21):989–994

    Article  CAS  Google Scholar 

  • Aoudia N, Rieu A, Briandet R, Deschamps J, Chluba J, Jego G, Garrido C, Guzzo J (2016) Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol 53:51–59

    Article  CAS  PubMed  Google Scholar 

  • Asaduzzaman MD, Iehata S, Akter S, Kader MA, Ghosh SK, Khan MNA, Abol-Munafi AB (2018) Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides. Aquaculture Rep 9:53–61

    Article  Google Scholar 

  • Austin B (2002) The bacterial microflora of fish. Sci World J 2:558–572

    Article  CAS  Google Scholar 

  • Azimirad M, Meshkini S, Ahmadifard N, Hoseinifar SH (2016) The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immunol 54:516–522

    Article  PubMed  Google Scholar 

  • Bakke AM, Glover C, Krogdahl A (2010) Feeding, digestion and absorption of nutrients. In: Grosell M et al. (ed) Fish physiology: the multifunctional gut of fish, vol 30. Academic Press, pp 57–110

    Google Scholar 

  • Balcázar JL, De Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3–4):173–186

    Article  PubMed  Google Scholar 

  • Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6(5):e1000902

    Google Scholar 

  • Bergström A, Kristensen MB, Bahl MI, Metzdorff SB, Fink LN, Frøkiaer H, Licht TR (2012). Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Res Notes 5(1):1–7

    Google Scholar 

  • Boge T, Rémigy M, Vaudaine S, Tanguy J, Bourdet-Sicard R, van der Werf S (2009) A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine 27(41):5677–5684

    Article  CAS  PubMed  Google Scholar 

  • Borrelli L, Aceto S, Agnisola C, De Paolo S, Dipineto L, Stilling RM ... Fioretti A (2016) Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep 6(1):1–9

    Google Scholar 

  • Brugman S, Ikeda-Ohtsubo W, Braber S, Folkerts G, Pieterse CM, Bakker PA (2018) A Comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front Nutr 5:80

    Google Scholar 

  • Burgess C, O’Connell-Motherway M, Sybesma W, Hugenholtz J, Van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70(10):5769–5777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt RL, Volkoff H (2019) Gut microbiota and energy homeostasis in fish. Front Endocrinol 10:9

    Article  Google Scholar 

  • Campana R, van Hemert S, Baffone W (2017) Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathogens 9(1):1–12

    Article  Google Scholar 

  • Cerezuela R, Meseguer J, Esteban MA (2011) Current knowledge in synbiotic use for fish aquaculture: a review. J Aquacul Res Developm S 1:1–7

    Google Scholar 

  • Cheng Y, Liu J, Ling Z (2021) Short-chain fatty acids-producing probiotics: a novel source of psychobiotics. Cri Rev Food Sci Nutr 1–31

    Google Scholar 

  • Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226(5):1065–1073

    Article  CAS  Google Scholar 

  • Cui LC, Guan XT, Liu ZM, Tian CY, Xu YG (2015) Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): a promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination. Vaccine 33(27):3092–3099

    Article  CAS  PubMed  Google Scholar 

  • Dalile B, Van Oudenhove L, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 16(8):461–478

    Google Scholar 

  • Defoirdt T, Halet D, Vervaeren H, Boon N, Van de Wiele T, Sorgeloos P, Bossier P, Verstraete W (2007) The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol 9(2):445–452

    Article  CAS  PubMed  Google Scholar 

  • Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  CAS  Google Scholar 

  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(5):1339–1353

    Google Scholar 

  • Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF (2014) Microbiota is essential for social development in the mouse. Mol Psychiatry 19(2):146–148

    Article  CAS  PubMed  Google Scholar 

  • Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K (2009) Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun 1(2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108(7):3047–3052. https://doi.org/10.1073/pnas.1010529108

    Article  PubMed  Google Scholar 

  • Drissi F, Merhej V, Angelakis E, El Kaoutari A, Carrière F, Henrissat B, Raoult D (2014) Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr Diabetes 4(2):e109–e109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Y, Dong H, Wang Y, Zhang Y, Zhang J (2018) Effects of the dietary probiotic Clostridium butyricum on intestine digestive and metabolic capacities, SCFA content and body composition in Marsupenaeus japonicus. J Ocean Univ China 17:690–696

    Article  CAS  Google Scholar 

  • Duca FA, Swartz TD, Sakar Y, Covasa M (2012) Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS One 7(6):e39748

    Google Scholar 

  • Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25(8–9):827–839

    Article  CAS  PubMed  Google Scholar 

  • Falcinelli S, Rodiles A, Unniappan S, Picchietti S, Gioacchini G, Merrifield DL, Carnevali O (2016) Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci Rep 6(1):1–13

    Article  CAS  Google Scholar 

  • Fetissov SO (2017) Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 13(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Francavilla R, De Angelis M, Rizzello CG, Cavallo N, Dal Bello F, Gobbetti M (2017) Selected probiotic lactobacilli have the capacity to hydrolyze gluten peptides during simulated gastrointestinal digestion. Appl Environ Microbiol 83(4)

    Google Scholar 

  • Galindo-Villegas J, García-Moreno D, De Oliveira S, Meseguer J, Mulero V (2012) Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. Proc Natl Acad Sci 109(39):E2605–E2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Xiao Y, Sun P, Peng S, Yin F, Ma X, Shi Z (2013) In vitro protective efficacy of Clostridium butyricum against fish pathogen infections. Indian J Microbiol 53(4):453–459. https://doi.org/10.1007/s12088-013-0394-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Xiao C, Min M, Zhang C, Peng S, Shi Z (2016) Effects of probiotics dietary supplementation on growth performance, innate immunity and digestive enzymes of silver pomfret, Pampus argenteus. Indian J Animal Res 50:936–941

    Google Scholar 

  • Gao XY, Liu Y, Miao LL, Li EW, Hou TT, Liu ZP (2017) Mechanism of anti-Vibrio activity of marine probiotic strain Bacillus pumilus H2, and characterization of the active substance. AMB Express 7(1):23. https://doi.org/10.1186/s13568-017-0323-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao XY, Liu Y, Miao LL, Li EW, Sun GX, Liu Y, Liu ZP (2017) Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4. Appl Microbiol Biotechnol 101:3759–3768. https://doi.org/10.1007/s00253-017-8095-x

    Article  CAS  PubMed  Google Scholar 

  • Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, MacQueen G, Sherman PM (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3):307–317

    Article  PubMed  Google Scholar 

  • Gioacchini G, Rossi G, Carnevali O (2017) Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Sci Rep 7(1):1–12

    Google Scholar 

  • Giorgia G, Elia C, Andrea P, Cinzia C, Stefania S, Ana R ... Oliana C (2018) Effects of Lactogen 13, a new probiotic preparation, on gut microbiota and endocrine signals controlling growth and appetite of Oreochromis niloticus juveniles. Microb Ecol 76(4):1063–1074

    Google Scholar 

  • Gomez D, Sunyer JO, Salinas I (2013) The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol 35:1729–1739

    Google Scholar 

  • Gómez GD, Balcázar JL (2008) A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol Med Microbiol 52(2):145–154

    Article  PubMed  CAS  Google Scholar 

  • Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen T (1999) Inhibition of Vibrio anguillarum by Pseudomonas fluorescens strain AH2—a possible probiotic treatment of fish. Appl Environ Microbiol 65:969–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosell M, Farrel AP, Brauner CJ (2010) In: Fish physiology: the multifunctional gut of fish. Academic Press

    Google Scholar 

  • Guo G, Li C, Xia B, Jiang S, Zhou S, Men X, Ren Y (2020) The efficacy of lactic acid bacteria usage in turbot Scophthalmus maximus on intestinal microbiota and expression of the immune related genes. Fish Shellfish Immunol 100:90–97

    Article  CAS  PubMed  Google Scholar 

  • Hague A, Butt AJ, Paraskeva C (1996) The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis? Proc Nutrition Soc 55(3):937–943

    Google Scholar 

  • Han H, Yi B, Zhong R, Wang M, Zhang S, Ma J ... Zhang H (2021) From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome 9(1):1–16

    Google Scholar 

  • Hao YT, Wu SG, Jakovlic I, Zou H, Li WX, Wang GT (2017) Impacts of diet on hindgut microbiota and short-chain fatty acids in grass carp (Ctenopharyngodon idellus). Aquac Res 48:5595–5605

    Google Scholar 

  • Hasan KN, Banerjee G (2020) Recent studies on probiotics as beneficial mediator in aquaculture: a review. The J Basic Appl Zool 81(1):1–16

    Google Scholar 

  • Hoseinifar SH, Sun YZ, Caipang CM (2017) Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquac Res 48(4):1380–1391

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Sun YZ, Wang A, Zhou Z (2018) Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol 9:2429

    Article  PubMed  PubMed Central  Google Scholar 

  • Huawei L, Wang P, Huang L, Li P, Zhang D (2019) Effects of regulating gut microbiota on the serotonin metabolism in the chronic unpredictable mild stress rat model. Neurogastroenterol Motility 31(10):e13677

    Google Scholar 

  • Kaattari SL, Piganelli JD (1997) Immunization with bacterial antigens: bacterial kidney disease. Dev Biol Stand 90:145–152

    CAS  PubMed  Google Scholar 

  • Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, Núñez G (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336(6086):1325–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanther M, Sun X, Mühlbauer M, Mackey LC, Flynn EJ III, Bagnat M, Jobin C, Rawls JF (2011) Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract. Gastroenterology 141(1):197–207

    Article  CAS  PubMed  Google Scholar 

  • Kawase T, Nagasawa M, Ikeda H, Yasuo S, Koga Y, Furuse M (2017) Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br J Nutr 117(6):775–783

    Google Scholar 

  • Keller D, Van Dinter R, Cash H, Farmer S, Venema K (2017) Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Beneficial Microbes 8(3):491–496

    Google Scholar 

  • Kelly JR, Borre Y, O’Brien C, Patterson E, El Aidy S, Deane J ... Dinan TG (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatri Res 82:109–118

    Google Scholar 

  • Kelly C, Salinas I (2017) Under Pressure: Interactions between commensal microbiota and the teleost immune system. Front Immunol 8:559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D-H, Austin B (2006) Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics. Vet Immunol Immunopathol 114(3–4):297–304

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim DY (2013) Microbial diversity in the intestine of olive flounder (Paralichthys olivaceus). Aquaculture 414–415:103–108

    Article  Google Scholar 

  • Kim D, Beck BR, Lee SM, Jeon J, Lee DW, Lee JI, Song SK (2016) Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (P. olivaceus). Fish and Shellfish Immunol 55:374–383

    Article  CAS  Google Scholar 

  • Knipe H, Temperton B, Lange A, Bass D, Tyler CR (2020) Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Rev Aquac 13(1):324–352

    Article  Google Scholar 

  • Kuebutornye FK, Abarike ED, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828

    Article  CAS  PubMed  Google Scholar 

  • La Fata G, Weber P, Mohajeri MH (2018) Probiotics and the gut immune system: indirect regulation. Probiot Antimicrobial Proteins 10(1):11–21

    Article  CAS  Google Scholar 

  • Lang T, Hansson GC, Samuelsson T (2007) Gel-forming mucins appeared early in metazoan evolution. Proc Natl Acad Sci 104(41):16209–16214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Flores M, Aguirre-Guzman G (2009) The use of probiotic in fish and shrimp aquaculture. a review. In: Probiotics: production, evaluation and uses in animal feed. Research Signpost, Kerala, pp 75–89

    Google Scholar 

  • Lazado CC, Caipang CMA, Estante EG (2015) Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 16(1):1–10

    Article  CAS  Google Scholar 

  • Li P, Mai K, Trushenski J, Wu G (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37(1):43–53

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Saputra F, Chen YC, Hu SY (2019) Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish Immunol 86:410–419

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yang Y, Zhang J, Gatlin DM, Ringo E, Zhou Z (2014) Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidised oil. Br J Nutr 112(1):15–29

    Article  CAS  PubMed  Google Scholar 

  • López Nadal A, Ikeda-Ohtsubo W, Sipkema D, Peggs D, Mcgurk C, Forlenza M, Wiegertjes GF, Brugman S (2020) Feed, microbiota, and gut immunity: using the zebrafish model to understand fish health. Front Immunol 11:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu Y, Zhang Z, Liang X, Chen Y, Zhang J, Yi H, Liu T, Yang L, Shi H, Zhang L (2019) Study of gastrointestinal tract viability and motility via modulation of serotonin in a zebrafish model by probiotics. Food Funct 10(11):7416–7425. https://doi.org/10.1039/c9fo02129a

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutrition Soc 62(1):67–72

    Google Scholar 

  • Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T (2013) Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. Plos One 8(1):53957

    Google Scholar 

  • Markowiak-Kopeć P, Åšliżewska K (2020) The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12(4):1107

    Google Scholar 

  • Martínez Cruz P, Ibáñez AL, Hermosillo OAM, Ramírez Saad HC (2012) Use of probiotics in aquaculture. Int Schol Res Notices

    Google Scholar 

  • Matsubara VH, Wang Y, Bandara HMHN, Mayer MPA, Samaranayake LP (2016) Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol 100(14):6415–6426

    Google Scholar 

  • Matsumoto M, Kibe R, Ooga T, Aiba Y, Sawaki E, Koga Y, Benno Y (2013) Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front Syst Neurosci 7:9

    Google Scholar 

  • Meade E, Slattery MA, Garvey M (2020) Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile?. Antibiotics 9(1):32. Basel, Switzerland

    Google Scholar 

  • Meimandipour A, Hair-Bejo M, Shuhaimi M, Azhar K, Soleimani AF, Rasti B, Yazid AM (2010) Gastrointestinal tract morphological alteration by unpleasant physical treatment and modulating role of Lactobacillus in broilers. Br Poult Sci 51(1):52–59

    Article  CAS  PubMed  Google Scholar 

  • Modanloo M, Soltanian S, Akhlaghi M, Hoseinifar SH (2017) The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings. Fish Shellfish Immunol 70:391–397

    Article  CAS  PubMed  Google Scholar 

  • Momose Y, Hirayama K, Itoh K (2008) Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 94(2):165–171

    Google Scholar 

  • Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A (2019) Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol 103(16):6463–6472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The struggle for iron—a metal at the host-pathogen interface. Cell Microbiol 12(12):1691–1702

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TL, Kim DH (2018a) Genome-wide comparison reveals a probiotic strain Lactococcus lactis WFLU12 isolated from the gastrointestinal tract of olive flounder (Paralichthys olivaceus) harboring genes supporting probiotic action. Mar Drugs 16(5):140

    Article  PubMed Central  CAS  Google Scholar 

  • Nguyen TL, Park CI, Kim DH (2017) Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture 471:113–120

    Article  Google Scholar 

  • Nguyen TL, Chun WK, Kim A, Kim N, Roh HJ, Lee Y, Yi M, Kim S, Park CI, Kim DH (2018b) Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichythys olivaceus). Front Microbiol 9:2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Paone P, Cani PD (2020) Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69(12):2232–2243

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Sánchez J, Estensoro I, Redondo MJ, Calduch-Giner JA, Kaushik S, Sitjà-Bobadilla A (2013) Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis. PloS One 8(6):e65457

    Google Scholar 

  • Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153

    Article  CAS  PubMed  Google Scholar 

  • Phelps D, Brinkman NE, Keely SP, Anneken EM, Catron TR, Betancourt D, Wood CE, Espenschied ST, Rawls JF, Tal T (2017) Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  • Philip S (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133

    Article  CAS  Google Scholar 

  • Piazzon MC, Calduch-Giner JA, Fouz B, Estensoro I, Simó-Mirabet P, Puyalto M, Karalazos V, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J (2017) Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome 5(1):164

    Article  PubMed  PubMed Central  Google Scholar 

  • Picchietti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F, Scapigliati G, Abelli L (2009) Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish and Shellfish Immunol 26(3):368–376

    Google Scholar 

  • Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ, Chervonsky AV (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10:49–66

    Article  Google Scholar 

  • Powell N, Walker MM, Talley NJ (2017) The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol 14(3):143–159

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Zhang Z, Wang Y, Li S, Ran C, Hu J, Xie Y, Li W, Zhou Z (2017) EPSP of L. casei BL23 protected against the infection caused by Aeromonas veronii via enhancement of immune response in zebrafish. Front Microbiol 8:2406

    Google Scholar 

  • Quan R (1992) Dietary nucleotides: potential for immune enhancement. In Foods Nutrition Immunity 1:13–21

    CAS  Google Scholar 

  • Rimoldi S, Gliozheni E, Ascione C, Gini E, Terova G (2018) Effect of a specific composition of short- and medium-chain fatty acid 1-Monoglycerides on growth performances and gut microbiota of gilthead sea bream (Sparus aurata). PeerJ 6:e5355

    Google Scholar 

  • Ringø E, Zhou Z, Vecino JG, Wadsworth S, Romero J, Krogdahl Ã…, Olsen RE, Dimitroglou A, Foey A, Davies S, Owen M (2016) Effect of dietary components on the gut microbiota of aquatic animals. a never-ending story? Aquac Nutr 22:219–282

    Article  CAS  Google Scholar 

  • Rizzardini G, Eskesen D, Calder PC, Capetti A, Jespersen L, Clerici M (2012) Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei sub. paracasei, L. casei 431® in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. British J Nutrition 107(6):876–884

    Google Scholar 

  • Robles R, Lozano AB, Sevilla A, Márquez L, Nuez-Ortin W, Moyano FJ (2013) Effect of partially protected butyrate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata). Fish Physiol Biochem 39(6):1567–1580

    Article  CAS  PubMed  Google Scholar 

  • Salinas I, Myklebust R, Esteban MA, Olsen RE, Meseguer J, Ringø E (2008) In vitro studies of Lactobacillus delbrueckii subsp. lactis in Atlantic salmon (Salmo salar L.) foregut: tissue responses and evidence of protection against Aeromonas salmonicida subsp. salmonicida epithelial damage. Veterinary Microbiol 128(1–2):167–177

    Google Scholar 

  • Schroeder BO (2019) Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep 7(1):3–12

    Article  Google Scholar 

  • Serpa J, Caiado F, Carvalho T, Torre C, Gonçalves LG, Casalou C, Lamosa P, Rodrigues M, Zhu Z, Lam EW, Dias S (2010) Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J Biol Chem 285(50):39211–39223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwin E, Sandhu KV, Dinan TG and Cryan JF (2016) May the force be with you: the light and dark sides of the microbiota–gut–brain axis in neuropsychiatry. CNS drugs 30(11):1019–1041

    Google Scholar 

  • Shimizu-Kadota M, Kato H, Shiwa Y, Oshima K, Machii M, Araya-Kojima T, Zendo T, Hattori M, Sonomoto K, Yoshikawa H (2013) Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid. Biosci Biotechnol Biochemistr 77(9):1804–1808

    Google Scholar 

  • Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 11:25

    Article  Google Scholar 

  • Singh B, Halestrap AP, Paraskeva C (1997) Butyrate can act as a stimulator of growth or inducer of apoptosis in human colonic epithelial cell lines depending on the presence of alternative energy sources. Carcinogenesis 18(6):1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Smith P, Davey S (1993) Evidence for the competitive exclusion of Aeromonas salmonicida from fish with stress-inducible furunculosis by a fluorescent pseudomonad. J Fish Dis 16(5):521–524

    Article  Google Scholar 

  • Soltani M, Kane A, Taheri-Mirghaed A, Pakzad K, Hosseini-Shekarabi P (2018) Effect of the probiotic, Lactobacillus plantarum on growth performance and haematological indices of rainbow trout (Oncorhynchus mykiss) immunized with bivalent streptococcosis/lactococcosis vaccine. Iranian J Fishereis Sci 18(2):283–295

    Google Scholar 

  • Soltani M, Lymbery A, Song SK, Hossein-Shrkarabi P (2019) Adjuvant effects of medicinal herbs and probiotics for fish vaccines. Rev Aquac 11(4):1325–1341

    Article  Google Scholar 

  • Sorci L, Blaby IK, Rodionova IA, De Ingeniis J, Tkachenko S, de Crécy-Lagard V, Osterman AL (2013) Quinolinate salvage and insights for targeting NAD biosynthesis in group a streptococci. J Bacteriol 195(4):726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standen BT, Rodiles A, Peggs DL, Davies SJ, Santos GA, Merrifield DL (2015) Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl Microbiol Biotechnol 99(20):8403–8417

    Article  CAS  PubMed  Google Scholar 

  • Stecker RA, Moon JM, Russo TJ, Ratliff KM, Mumford PW, Jäger R, Purpura M, Kerksick CM (2020) Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr Metab 17(1):1–11

    Article  CAS  Google Scholar 

  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(1):263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YZ, Xia HQ, Yang HL, Wang YL, Zou WC (2014) TLR2 signaling may play a key role in the probiotic modulation of intestinal microbiota in grouper Epinephelus coioides. Aquaculture 430:50–56

    Article  CAS  Google Scholar 

  • Suzer C, Coban D, Kamaci HO, Saka S, Firat K, Otgucuoglu O, Kucuksari H (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata: L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280(1–4):140–145

    Google Scholar 

  • Taylor A, Hale J, Wiltschut J, Lehmann H, Dunstan JA, Prescott SL (2006) Evaluation of the effects of probiotic supplementation from the neonatal period on innate immune development in infancy. Clin Exp Allergy 36(10):1218–1226

    Article  CAS  PubMed  Google Scholar 

  • Thornton DJ, Rousseau K, McGuckin MA (2008) Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 70:459–486

    Google Scholar 

  • Thursby E, Juge N (2017) Introduction for the human gut flora. Biochem J 474(11):1823–1836

    Google Scholar 

  • Tian L, Zhou XQ, Jiang WD, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Xie F (2017) Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 66:548–563

    Google Scholar 

  • Tinh NTN, Dierckens K, Sorgeloos P, Bossier P (2008) A review of the functionality of probiotics in the larviculture food chain. Mar Biotechnol 10:1–12

    Article  CAS  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    Article  CAS  PubMed  Google Scholar 

  • Van de Guchte M, Blottière HM, Doré J (2018) Humans as holobionts: implications for prevention and therapy. Microbiome 6(1):1–6

    Google Scholar 

  • Vazquez-Gutierrez P, Lacroix C, Jaeggi T, Zeder C, Zimmerman MB, Chassard C (2015) Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron. BMC Microbiol 15(1):1–10

    Google Scholar 

  • Venkatalakshmi S, Ebanasar J (2015) Immunostimulatory effect of Lactobacillus sporogenes on the nonspecific defense mechanisms of Oreochromis mossambicus (Peters). Int J Fisheries Aquatic Stud 2(4):362–369

    Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitetta L, Saltzman ET, Thomsen M, Nikov T, Hall S (2017) Adjuvant probiotics and the intestinal microbiome: enhancing vaccines and immunotherapy outcomes. Vaccines 5(4):50

    Article  PubMed Central  CAS  Google Scholar 

  • Wang J, Ji H (2019) Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Curr Protein Pept Sci 20(2):125–131

    Article  CAS  PubMed  Google Scholar 

  • Wang X, He G, Mai K, Xu W, Zhou H (2016) Differential regulation of taurine biosynthesis in rainbow trout and Japanese flounder. Sci Rep 6(1):1–13

    CAS  Google Scholar 

  • Wang Y, Al Farraj DA, Vijayaraghavan P, Hatamleh AA, Biji GD, Rady AM (2020) Host associated mixed probiotic bacteria induced digestive enzymes in the gut of tiger shrimp Penaeus monodon. Saudi J Biol Sci 27(9):2479–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson KH, Perini F (1988) Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect Immun 56(10):2610–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Cao J, Wang M, Lu M, Chen G, Gao F, Liu Z, Zhang D, Ke X, Yi M (2019) Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia. Fish Shellfish Immunol 86:53–63

    Article  CAS  PubMed  Google Scholar 

  • Xu HM, Rong YJ, Zhao MX, Song B, Chi ZM (2014) Antibacterial activity of the lipopeptides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals. Appl Microbiol Biotechnol 98(1), 127–36. https://doi.org/10.1007/s00253-013-5291-1

  • Yang H, Sun Y, Ma, R, Song K, Wang K, Lin WJOELS (2010) Antagonistic property of lactic acid bacteria MM1 and MM4 isolated from the intestine of grouper. Epinephelus coioides 41:544–548

    Google Scholar 

  • Ye JD, Wang K, Li FD, Sun YZ (2011) Single or combined effects of fructo-and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquac Nutr 17:902–911

    Article  Google Scholar 

  • Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X ... Xie P (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796

    Google Scholar 

  • Zhou X, Tian Z, Wang Y, Li W (2010) Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol Biochem 36(3):501–509

    Google Scholar 

  • Ziaei-Nejad S, Rezaei MH, Takami GA, Lovett DL, Mirvaghefi AR, Shakouri M (2006) The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp. Fenneropenaeus indicus. Aquaculture 252(2–4):516–524

    Google Scholar 

  • Zokaeifar H, Balcázar JL, Saad CR, Kamarudin MS, Sijam K, Arshad A (2012) Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp Litopenaeus vannamei. Fish and Shellfish Immunol 33(4):683–689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Hyung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, T.L., Thi, H.H.P., Lee, Y., Lee, J., Kim, DH. (2022). Modes of Action of Probiotics. In: Austin, B., Sharifuzzaman, S. (eds) Probiotics in Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-030-98621-6_12

Download citation

Publish with us

Policies and ethics