Skip to main content

Hot Desert Microbiology: Perspectives in a Warming World

  • Chapter
  • First Online:
Microbiology of Hot Deserts

Part of the book series: Ecological Studies ((ECOLSTUD,volume 244))

  • 527 Accesses

Abstract

Deserts are the most dominant terrestrial environments as they cover over a third of the Earth’s emerged surface. These arid ecosystems further influence global biogeochemical cycling particularly via the emission of dust. These dust clouds can travel thousands of kilometers and fertilize very distant environments as well as intensify global warming. This is concerning as desert surfaces are expanding with climate change. This concluding chapter therefore briefly discusses possible novel research avenues that desert microbial ecologist could follow in the context of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 1903, when Captain Scott first discovered the Dry Valleys in Antarctica, he wrote “It is worthy to record, too, that we have seen no living thing, not even a moss or a lichen; all that we did find, far inland amongst the moraine heaps, was the skeleton of a Weddell seal, and how that came there is beyond guessing. It is certainly a valley of the dead; even the great glacier which once pushed through it has withered away” (Scott 1907). Yet this Mars-like environment unarguably harbors diverse and active microbial communities (e.g., Lee et al. 2012; Chan et al. 2013; Ortiz et al. 2020; Canini et al. 2021; Chap. 10).

References

  • Archer SD, Pointing SB (2020) Anthropogenic impact on the atmospheric microbiome. Nat Microbiol 5(2):229–231

    Article  CAS  PubMed  Google Scholar 

  • Archer S, Lee K, Caruso T, Leung M, Tong X, Hinchliffe G, Maki T, Santl-Temkiv T, Warren-Rhodes K, Gomez-Silva B et al. (2021) Diverse recruitment to a globally structured atmospheric microbiome

    Google Scholar 

  • Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor Ecol 15(1):13–23

    Article  Google Scholar 

  • Bristow CS, Hudson-Edwards KA, Chappell A (2010) Fertilizing the Amazon and equatorial Atlantic with west African dust. Geophys Res Lett 37(14):L14807

    Article  CAS  Google Scholar 

  • Bull AT, Asenjo JA, Goodfellow M, Gómez-Silva B (2016) The Atacama Desert: technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol 70:215–234

    Article  CAS  PubMed  Google Scholar 

  • Canini F, Geml J, D'Acqui LP, Buzzini P, Turchetti B, Onofri S, Ventura S, Zucconi L (2021) Fungal diversity and functionality are driven by soil texture in Taylor Valley, Antarctica. Fungal Ecol 50:101041

    Article  Google Scholar 

  • Caruso T, Chan Y, Lacap DC, Lau MC, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5(9):1406–1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Functional ecology of an Antarctic dry valley. Proc Natl Acad Sci 110(22):8990–8995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan DA, Hopkins DW, Jones BE, Maggs-Kölling G, Majewska R, Ramond JB (2020) Microbiomics of Namib Desert habitats. Extremophiles 24(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Di Luca A, de Elía R, Bador M, Argüeso D (2020) Contribution of mean climate to hot temperature extremes for present and future climates. Weather Clim Extremes 28:100255

    Article  Google Scholar 

  • Faramarzi M, Abbaspour KC, Vaghefi SA, Farzaneh MR, Zehnder AJ, Srinivasan R, Yang H (2013) Modeling impacts of climate change on freshwater availability in Africa. J Hydrol 480:85–101

    Article  Google Scholar 

  • Gonzalez-Martin C, Teigell-Perez N, Valladares B, Griffin DW (2014) The global dispersion of pathogenic microorganisms by dust storms and its relevance to agriculture. Adv Agron 127:1–41

    Article  Google Scholar 

  • Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20(3):459–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Grote EE, Belnap J, Housman DC, Sparks JP (2010) Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol 16(10):2763–2774

    Article  Google Scholar 

  • Gunnigle E, Ramond JB, Frossard A, Seeley M, Cowan D (2014) A sequential co-extraction method for DNA, RNA and protein recovery from soil for future system-based approaches. J Microbiol Methods 103:118–123

    Article  CAS  PubMed  Google Scholar 

  • Gunnigle E, Frossard A, Ramond JB, Guerrero L, Seely M, Cowan DA (2017) Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Herut B, Collier R, Krom MD (2002) The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean. Limnol Oceanogr 47(3):870–878

    Article  CAS  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Chang 6(2):166–171

    Article  Google Scholar 

  • Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A, Shinoda M, Ma Z, Guo W, Li Z, Zhang L (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55(3):719–778

    Article  Google Scholar 

  • IPCC (2021) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. In Press

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2014) Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Core writing team, pp. 1–151

    Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, Montgomery K, Lines T, Beardall J, Van Dorst J, Snape I (2017) Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552(7685):400–403

    Article  CAS  PubMed  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71

    Article  CAS  PubMed  Google Scholar 

  • Johnson RM, Ramond JB, Gunnigle E, Seely M, Cowan DA (2017) Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters. Extremophiles 21(2):381–392

    Article  PubMed  Google Scholar 

  • Jordaan K, Lappan R, Dong X, Aitkenhead IJ, Bay SK, Chiri E, Wieler N, Meredith LK, Cowan DA, Chown SL, Greening C (2020) Hydrogen-oxidizing bacteria are abundant in desert soils and strongly stimulated by hydration. Msystems 5(6):e01131–e01120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21(11):638–644

    Article  PubMed  Google Scholar 

  • Kok JF, Ridley DA, Zhou Q, Miller RL, Zhao C, Heald CL, Ward DS, Albani S, Haustein K (2017) Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat Geosci 10(4):274–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC (2012) The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J 6(5):1046–1057

    Article  CAS  PubMed  Google Scholar 

  • León-Sobrino C, Ramond JB, Maggs-Kölling G, Cowan DA (2019) Nutrient acquisition, rather than stress response over diel cycles, drives microbial transcription in a hyper-arid Namib Desert soil. Front Microbiol 10:1054

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Chang Biol 19(12):3835–3847

    Article  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39(2):203–221

    Article  CAS  PubMed  Google Scholar 

  • Maki T, Lee KC, Pointing SB, Watanabe K, Aoki K, Archer SD, Lacap-Bugler DC, Ishikawa A (2021) Desert and anthropogenic mixing dust deposition influences microbial communities in surface waters of the western Pacific Ocean. Sci Total Environ 719:148026

    Article  CAS  Google Scholar 

  • Maphangwa KW, Musil CF, Raitt L, Zedda L (2012) Experimental climate warming decreases photosynthetic efficiency of lichens in an arid south African ecosystem. Oecologia 169(1):257–268

    Article  PubMed  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7(10):e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilson JW, Califf K, Cardona C, Copeland A, Van Treuren W, Josephson KL, Knight R, Gilbert JA, Quade J, Caporaso JG, Maier RM (2017) Significant impacts of increasing aridity on the arid soil microbiome. MSystems 2(3):e00195–e00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4(1):25–51

    Article  Google Scholar 

  • Ortiz M, Bosch J, Coclet C, Johnson J, Lebre P, Salawu-Rotimi A, Vikram S, Makhalanyane T, Cowan D (2020) Microbial nitrogen cycling in Antarctic soils. Microorganisms 8(9):1442

    Article  CAS  PubMed Central  Google Scholar 

  • Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Von Goethem MW, Bay SK, Islam ZF, Jordaan K, Vikram M, Hogg ID, Makhalanyane TP, Chown SL, Grinter R, Cowan DA, Greening C (2021) Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Nat Acad Sci USA 118:e2025322118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pointing, S.B. and Belnap, J. (2012) Microbial colonization and controls in dryland systems. Nature Reviews Microbiology 10(8):551–562

    Google Scholar 

  • Pointing SB, Belnap J (2014) Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers Conserv 23(7):1659–1667

    Article  Google Scholar 

  • Qi J, Liu Y, Wang Z, Zhao L, Zhang W, Wang Y, Li X (2021) Variations in microbial functional potential associated with phosphorus and sulfur cycling in biological soil crusts of different ages at the Tengger Desert. China Applied Soil Ecology 165:104022

    Article  Google Scholar 

  • Salawu-Rotimi A, Lebre PH, Vos HC, Fister W, Kuhn N, Eckardt F, Cowan DA (2021) Gone with the wind: microbial communities associated with dust from emissive farmlands. Microb Ecol 82:859–869

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera JP, Schmitt-Kopplin P, Grossart HP, Parro V, Kaupenjohann M et al (2018) Transitory microbial habitat in the hyperarid Atacama Desert. Proc Natl Acad Sci 115(11):2670–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RF (1907) The voyage of the discovery, vol 1. Charles Scribner’s Sons, New York

    Google Scholar 

  • Šikoparija B (2020) Desert dust has a notable impact on aerobiological measurements in Europe. Aeolian Res 47:100636

    Article  Google Scholar 

  • Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, Hofmockel KS, Lennon JT, Levine UY, MacGregor BJ, Pett-Ridge J (2012) Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109(1):7–18

    Article  CAS  Google Scholar 

  • Tucker C, Antoninka A, Day N, Poff B, Reed S (2020) Biological soil crust salvage for dryland restoration: an opportunity for natural resource restoration. Restor Ecol 28:S9–S16

    Article  Google Scholar 

  • Zhang X, Zhao L, Tong DQ, Wu G, Dan M, Teng B (2016) A systematic review of global desert dust and associated human health effects. Atmos 7(12):158

    Article  Google Scholar 

  • Zhang XC, Li JY, Liu JL, Yuan CX, Li YN, Liu BR, Yan XF (2021) Temporal shifts in cyanobacterial diversity and their relationships to different types of biological soil crust in the southeastern Tengger Desert. Rhizosphere 17:100322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Ramond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramond, JB., Cowan, D.A. (2022). Hot Desert Microbiology: Perspectives in a Warming World. In: Ramond, JB., Cowan, D.A. (eds) Microbiology of Hot Deserts. Ecological Studies, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-030-98415-1_12

Download citation

Publish with us

Policies and ethics