Skip to main content

Causes of Cancer and Mechanisms of Carcinogenesis

  • Chapter
  • First Online:
Understanding Cancer

Abstract

Cancer, like other diseases, is initiated by an interaction between a causative agent and a susceptible live organism. There are many causative agents and several factors which determine susceptibility or resistance to them, explaining why cancer does not develop in all exposed individuals. This Chapter discusses the mechanisms of action of several known carcinogenic agents including: (i) various chemicals that rapidly exert irreversible effects by electrophyllic binding to DNA (ii) solid state agents, like asbestos fibres and plastic films, that exert their effects by their physical topography (iii) radiation, which seemingly exerts its effects remotely and (iv) viruses, that are apparently inert, non-viable entities—until they enter other living organisms and use host resources for their own purposes. Their mechanisms of action are diverse and complicated but share some common properties: (i) each seems to act by exerting effects on cellular DNA (ii) all pervade the environment in which life exists, are inescapable and pose occupational hazards, (iii) they can be cleared from the body leaving no trace, (iv) the target cell which becomes transformed, believed to be a “stem” or progenitor cell, is elusive to identify and the timing of action relative to phases of the mitotic cycle is critical. Broader issues of cancer pathogenesis involving (a) susceptibility or resistance to neoplasia, (b) initiation and promotion of tumour development, (c) the “field effect” and its surgical implications (d) latency, (e) progression and (f) regression are discussed and explained. Interwoven into the descriptions of mechanisms of carcinogenesis are explanations of how molecular level genomic damage scales-up into changes at the cellular, supracellular, tissue, organ and whole-person realms. Specifically, these changes consist of cellular and tissue disorganisation, invasion, metastasis and deleterious effects on other organs. Included, as examples, are accounts of the cellular and histopathological changes seen in asbestos-induced mesotheliomas, plastic-induced sarcomas, carcinogen induced skin tumours and virus-induced hepatomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamagiwa K, Ichikawa K. experimental study of the pathogenesis of carcinoma. J Cancer Res. 1918;3(1):1–29.

    Google Scholar 

  2. Kennaway E. The identification of a carcinogenic compound in coal-tar. Br Med J. 1955;2(4942):749–52.

    Article  CAS  Google Scholar 

  3. Dawe CJ, Harshbarger JC. Neoplasms and related disorders of invertebrate and lower vertebrate animals. National Cancer Institute Monograph: 1969;31.

    Google Scholar 

  4. Miller EC, Miller JA. In vivo combinations between carcinogens and tissue constituents and their possible role in carcinogenesis. Cancer Res. 1952;12(8):547–56.

    CAS  Google Scholar 

  5. Miller EC, Miller JA. The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene. Can Res. 1947;7:468–80.

    CAS  Google Scholar 

  6. Miller EC, Miller JA. Mechanisms of chemical carcinogenesis. Cancer. 1981;47(5 Suppl):1055–64.

    Article  CAS  Google Scholar 

  7. Mckinnell RG (2016) The understanding, prevention and control of cancer. Chap 3. Leiden: Brill; 2016. p. 48 et seq.

    Google Scholar 

  8. Conney AH, Miller EC, Miller JA. The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res. 1956;16(5):450–9.

    Google Scholar 

  9. Miller JA. Carcinogenesis by chemicals: an overview—G. H. A. Clowes memorial lecture. Cancer Res. 1970;30(3):559–76.

    Google Scholar 

  10. Cohen SM, Arnold LL. Chemical carcinogenesis. Toxicol Sci. 2011;120(Suppl 1):S76–92.

    Article  CAS  Google Scholar 

  11. James 1, King of England. A counterblaste to tobacco. Imprinted at London: R.B.; 1604. p. 1–23. Available at: https://tinyurl.com/2tbx9pay

  12. Hammond J. Work for chimney sweeps or a warning for tabacconists describing the pernicious use of tabacco. London, T Este for Thomas Bushell 1602 cited by Rowley A 2003 in “How England learned to smoke”. Thesis submitted for the degree of Doctor of Philosophy, University of York, UK. https://core.ac.uk/download/pdf/42604321.pdf.

  13. Proctor RN. The Nazi War on cancer. Princeton, NJ, USA: Princeton University Press; 1999. p. 178–247.

    Google Scholar 

  14. Doll R, Hill AB. Lung cancer and other causes of death in relation to smoking; a second report on the mortality of British doctors. Br Med J. 1956;2(5001):1071–81.

    Article  CAS  Google Scholar 

  15. Tindle HA, Stevenson Duncan M, Greevy RA, Vasan RS, Kundu S, Massion PP, et al. Lifetime smoking history and risk of lung cancer: results from the Framingham heart study. J Natl Cancer Inst. 2018;110(11):1201–7.

    Google Scholar 

  16. Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ. 2000;321(7257):323–9.

    Article  CAS  Google Scholar 

  17. (IARC) IAfRoC. Tobacco smoking and involuntary smoking. Lyons, France: IARC; 2004. Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 83.

    Google Scholar 

  18. Markowitz SB, Levin SM, Miller A, Morabia A. Asbestos, asbestosis, smoking, and lung cancer. New findings from the North American insulator cohort. Am J Respir Crit Care Med. 2013;188(1):90–6.

    Google Scholar 

  19. Cancer(IARC) IAfRo. Evaluation of the carcinogenic risk of chemicals to man; 1977. p. 1–106. Available from: http://monographs.iarc.fr/ENG/Monographs/vol1-42/mono14.pdf.

  20. (NIOSH) NIoOSaH, Control CfD. Asbestos fibers and other elongate Mineral particles: state of the science and roadmap for research. In: Services DoHaH, editor. Current intelligence bulletin, vol. 62;2011. https://www.cdc.gov/niosh/docs/2011-159/.

  21. Baan RA. Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: recent evaluations by an IARC Monographs Working Group. Inhalation Toxicol. 2007;19(Suppl 1):213–28.

    Article  CAS  Google Scholar 

  22. IARC. Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite and anthophyllite). Lyon: International Agency Research on Cancer; 2012. p. 219–309. Available from: http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-11.pdf.

  23. Asbestos IoMUCo. Asbestos: selected cancers;2006. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20318/. Washington (DC): National Academies Press (US); 2006.

  24. Doll R. Mortality from lung cancer in asbestos workers. Br J Ind Med. 1955;12(2):81–6.

    CAS  Google Scholar 

  25. Selikoff IJ, Churg J, Hammond EC. Asbestos exposure and neoplasia. JAMA. 1964;188:22–6.

    Article  CAS  Google Scholar 

  26. Tossavainen A. Asbestos, asbestosis, and cancer: the Helsinki criteria for diagnosis and attribution. Scand J Work Environ Health. 1997;23(4):311–6.

    Article  Google Scholar 

  27. (NIOSH) NIfOSaH. Workplace exposure to asbestos;1980. p. 1–3 et seq. https://www.cdc.gov/niosh/docs/81-103/pdfs/81-103.pdf?id=10.26616/NIOSHPUB81103.

  28. Lemen RA. Epidemiology of asbestos-related diseases and the knowledge that led to what is known today. In: Dodson RF, Hammar SP, editors. Asbestos. Boca Raton, FL, USA: CRC Press; 2011.

    Google Scholar 

  29. Oury TD, Sporn TA, Roggli VL. Pathology of asbestos-associated diseases. 3rd ed. Heidelberg: Springer; 2014.

    Book  Google Scholar 

  30. Roggli VL. Carcinoma of the lung. In: Oury TD, Sporn TA, Roggli VL, editors. Pathology of asbestos-associated diseases. Heidelberg: Springer; 2014. p. 157–76.

    Chapter  Google Scholar 

  31. Tomashefski JFJ, Cagle PT, Farver CF, Fraire AE. Dail and Hammar’s pulmonary pathology. Vol. 2: Neoplastic lung diseases; 2007.

    Google Scholar 

  32. Wagner JC, Berry G, Skidmore JW, Timbrell V. The effects of the inhalation of asbestos in rats. Br J Cancer. 1974;29(3):252–69.

    Article  CAS  Google Scholar 

  33. Mollo F, Magnani C, Bo P, Burlo P, Cravello M. The attribution of lung cancers to asbestos exposure: a pathologic study of 924 unselected cases. Am J Clin Pathol. 2002;117(1):90–5.

    Article  CAS  Google Scholar 

  34. Stayner L, Welch LS, Lemen R. The worldwide pandemic of asbestos-related diseases. Annu Rev Public Health. 2013;34:205–16.

    Article  Google Scholar 

  35. Nielsen LS, Baelum J, Rasmussen J, Dahl S, Olsen KE, Albin M, et al. Occupational asbestos exposure and lung cancer—a systematic review of the literature. Arch Environ Occup Health. 2014;69(4):191–206.

    Article  CAS  Google Scholar 

  36. Tomashefski JFJ, Cagle PT, Farver CF, Fraire AE. Dail and Hammar’s pulmonary pathology. Vol 2: Neoplastic lung diseases (especially Chaps. 35, 36 and 43 by Hammar SP, et al.); 2007.

    Google Scholar 

  37. Henderson D. Asbestos and lung cancer. In: Corrin B, editor. Pathology of lung tumors. New York: Churchill Livingston; 1997.

    Google Scholar 

  38. Offermans NS, Vermeulen R, Burdorf A, Goldbohm RA, Kauppinen T, Kromhout H, et al. Occupational asbestos exposure and risk of pleural mesothelioma, lung cancer, and laryngeal cancer in the prospective Netherlands cohort study. J Occup Environ Med. 2014;56(1):6–19.

    Article  CAS  Google Scholar 

  39. Olsson AC, Vermeulen R, Schuz J, Kromhout H, Pesch B, Peters S, et al. Exposure-response analyses of asbestos and lung cancer subtypes in a pooled analysis of case-control studies. Epidemiology. 2017;28(2):288–99.

    Article  Google Scholar 

  40. Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960;17:260–71.

    CAS  Google Scholar 

  41. Bianchi C, Bianchi T. Malignant mesothelioma: global incidence and relationship with asbestos. Ind Health. 2007;45(3):379–87.

    Article  Google Scholar 

  42. Bianchi C, Brollo A, Ramani L, Bianchi T, Giarelli L. Asbestos exposure in malignant mesothelioma of the pleura: a survey of 557 cases. Ind Health. 2001;39(2):161–7.

    Article  CAS  Google Scholar 

  43. Burdorf A, Swuste P. An expert system for the evaluation of historical asbestos exposure as diagnostic criterion in asbestos-related diseases. Ann Occup Hyg. 1999;43(1):57–66.

    Article  CAS  Google Scholar 

  44. Henderson DW, Jones ML, De Klerk N, Leigh J, Musk AW, Shilkin KB, et al. The diagnosis and attribution of asbestos-related diseases in an Australian context: report of the Adelaide workshop on asbestos-related diseases, 6–7 Oct 2000. Int J Occup Environ Health. 2004;10(1):40–6.

    Google Scholar 

  45. Hilliard AK, Lovett JK, McGavin CR. The rise and fall in incidence of malignant mesothelioma from a British Naval Dockyard, 1979–1999. Occup Med. 2003;53(3):209–12.

    Article  CAS  Google Scholar 

  46. Iwatsubo Y, Pairon JC, Boutin C, Menard O, Massin N, Caillaud D, et al. Pleural mesothelioma: dose-response relation at low levels of asbestos exposure in a French population-based case-control study. Am J Epidemiol. 1998;148(2):133–42.

    Article  CAS  Google Scholar 

  47. Jiang L, Akatsuka S, Nagai H, Chew SH, Ohara H, Okazaki Y, et al. Iron overload signature in chrysotile-induced malignant mesothelioma. J Pathol. 2012;228(3):366–77.

    Article  CAS  Google Scholar 

  48. Markowitz S. Asbestos-related lung cancer and malignant mesothelioma of the pleura: selected current issues. Semin Respir Crit Care Med. 2015;36(3):334–46.

    Article  Google Scholar 

  49. Pavlisko EN, Sporn TA. Mesothelioma. In: Oury TD, Sporn TA, Roggli VL, editors. Pathology of asbestos-associated diseases. 3rd ed. New York; 2014.

    Google Scholar 

  50. Robinson BW, Musk AW, Lake RA. Malignant mesothelioma. Lancet. 2005;366(9483):397–408.

    Article  CAS  Google Scholar 

  51. Selikoff IJ, Churg J, Hammond EC. Relation between exposure to asbestos and mesothelioma. N Engl J Med. 1965;272:560–5.

    Article  CAS  Google Scholar 

  52. Smith AH, Wright CC. Chrysotile asbestos is the main cause of pleural mesothelioma. Am J Ind Med. 1996;30(3):252–66.

    Article  CAS  Google Scholar 

  53. Suzuki Y. Pathology of human malignant mesothelioma–preliminary analysis of 1,517 mesothelioma cases. Ind Health. 2001;39(2):183–5.

    Article  CAS  Google Scholar 

  54. Welch LS. Asbestos exposure causes mesothelioma, but not this asbestos exposure: an amicus brief to the Michigan Supreme Court. Int J Occup Environ Health. 2007;13(3):318–27.

    Article  Google Scholar 

  55. IARC. Asbestos; 1987. Available from: http://monographs.iarc.fr/ENG/Monographs/suppl7/Suppl7-20.pdf.

  56. Egilman D, Fehnel C, Bohme SR. Exposing the “myth” of ABC, “anything but chrysotile”: a critique of the Canadian asbestos mining industry and McGill University chrysotile studies. Am J Ind Med. 2003;44(5):540–57.

    Article  Google Scholar 

  57. Kanarek MS. Mesothelioma from chrysotile asbestos: update. Ann Epidemiol. 2011;21(9):688–97.

    Article  Google Scholar 

  58. Mirabelli D, Calisti R, Barone-Adesi F, Fornero E, Merletti F, Magnani C. Excess of mesotheliomas after exposure to chrysotile in Balangero, Italy. Occup Environ Med. 2008;65(12):815–9.

    Article  CAS  Google Scholar 

  59. Wang X, Lin S, Yu I, Qiu H, Lan Y, Yano E. Cause-specific mortality in a Chinese chrysotile textile worker cohort. Cancer Sci. 2013;104(2):245–9.

    Article  CAS  Google Scholar 

  60. Baur X, Woitowitz HJ, Budnik LT, Egilman D, Oliver C, Frank A, et al. Asbestos, asbestosis, and cancer: the Helsinki criteria for diagnosis and attribution. Critical need for revision of the 2014 update. Am J Ind Med. 2017;60(5):411–21.

    Google Scholar 

  61. Lemen RA. Chrysotile asbestos as a cause of mesothelioma: application of the Hill causation model. Int J Occup Environ Health. 2004;10(2):233–9.

    Article  Google Scholar 

  62. Suzuki Y, Yuen SR. Asbestos tissue burden study on human malignant mesothelioma. Ind Health. 2001;39(2):150–60.

    Article  CAS  Google Scholar 

  63. Suzuki Y, Yuen SR. Asbestos fibers contributing to the induction of human malignant mesothelioma. Ann N Y Acad Sci. 2002;982:160–76.

    Article  CAS  Google Scholar 

  64. World-Health-Organization. Chrysotile asbestos; 2014. Available from: http://tinyurl.com/kgvkbja.

  65. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

    CAS  Google Scholar 

  66. Goodman JE, Nascarella MA, Valberg PA. Ionizing radiation: a risk factor for mesothelioma. Cancer Causes Control CCC. 2009;20(8):1237–54.

    Article  Google Scholar 

  67. De Bruin ML, Burgers JA, Baas P, van’t Veer MB, Noordijk EM, Louwman MW, et al. Malignant mesothelioma after radiation treatment for Hodgkin lymphoma. Blood. 2009;113(16):3679–81.

    Google Scholar 

  68. Hofmann J, Mintzer D, Warhol MJ. Malignant mesothelioma following radiation therapy. Am J Med. 1994;97(4):379–82.

    Article  CAS  Google Scholar 

  69. Mumma MT, Sirko JL, Boice JD Jr, Blot WJ. Mesothelioma mortality within two radiation monitored occupational cohorts. Int J Radiat Biol. 2019;2019:1–9.

    Google Scholar 

  70. Metz-Flamant C, Guseva Canu I, Laurier D. Malignant pleural mesothelioma risk among nuclear workers: a review. J Radiol Prot. 2011;31(1):9–23.

    Article  CAS  Google Scholar 

  71. Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, et al. Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat Res. 2017;187(5):513–37.

    Article  CAS  Google Scholar 

  72. Schubauer-Berigan MK, Daniels RD, Bertke SJ, Tseng CY, Richardson DB. Cancer mortality through 2005 among a pooled cohort of U.S. nuclear workers exposed to external ionizing radiation. Radiat Res. 2015;183(6):620–31.

    Google Scholar 

  73. Gibb H, Fulcher K, Nagarajan S, McCord S, Fallahian NA, Hoffman HJ, et al. Analyses of radiation and mesothelioma in the US transuranium and uranium registries. Am J Public Health. 2013;103(4):710–6.

    Article  Google Scholar 

  74. Till JE, Beck HL, Boice JD, Mohler HJ, Mumma MT, Aanenson JW, et al. Asbestos exposure and mesothelioma mortality among atomic veterans. Int J Radiat Biol. 2018;2018:1–15.

    Google Scholar 

  75. Berry G, Newhouse ML, Antonis P. Combined effect of asbestos and smoking on mortality from lung cancer and mesothelioma in factory workers. Br J Ind Med. 1985;42(1):12–8.

    CAS  Google Scholar 

  76. Hammond EC, Selikoff IJ, Seidman H. Asbestos exposure, cigarette smoking and death rates. Ann N Y Acad Sci. 1979;330:473–90.

    Article  CAS  Google Scholar 

  77. Muscat JE, Wynder EL. Cigarette smoking, asbestos exposure, and malignant mesothelioma. Cancer Res. 1991;51(9):2263–7.

    CAS  Google Scholar 

  78. Ribak J, Lilis R, Suzuki Y, Penner L, Selikoff IJ. Malignant mesothelioma in a cohort of asbestos insulation workers: clinical presentation, diagnosis, and causes of death. Br J Ind Med. 1988;45(3):182–7.

    CAS  Google Scholar 

  79. Tagnon I, Blot WJ, Stroube RB, Day NE, Morris LE, Peace BB, et al. Mesothelioma associated with the shipbuilding industry in coastal Virginia. Cancer Res. 1980;40(11):3875–9.

    CAS  Google Scholar 

  80. Marinaccio A, Consonni D, Mensi C, Mirabelli D, Migliore E, Magnani C, et al. Association between asbestos exposure and pericardial and tunica vaginalis testis malignant mesothelioma: a case-control study and epidemiological remarks. Scand J Work Environ Health. 2020.

    Google Scholar 

  81. Boffetta P. Epidemiology of peritoneal mesothelioma: a review. Annals Oncol Official J Eur Soc Med Oncol/ESMO. 2007;18(6):985–90.

    Article  CAS  Google Scholar 

  82. Kannerstein M, Churg J. Peritoneal mesothelioma. Hum Pathol. 1977;8(1):83–94.

    Article  CAS  Google Scholar 

  83. Mirarabshahii P, Pillai K, Chua TC, Pourgholami MH, Morris DL. Diffuse malignant peritoneal mesothelioma—an update on treatment. Cancer Treat Rev. 2012;38(6):605–12.

    Article  Google Scholar 

  84. Taub RN, Keohan ML, Chabot JC, Fountain KS, Plitsas M. Peritoneal mesothelioma. Curr Treat Options Oncol. 2000;1(4):303–12.

    Article  CAS  Google Scholar 

  85. Bani-Hani KE, Gharaibeh KA. Malignant peritoneal mesothelioma. J Surg Oncol. 2005;91(1):17–25.

    Article  Google Scholar 

  86. National-Cancer-Institute. Cancer incidence statistics; 2011. Available from: http://www.cancer.gov/about-cancer/what-is-cancer/statistics.

  87. Wolff H, Vehmas T, Oksa P, Rantanen J, Vainio H. Asbestos, asbestosis, and cancer, the Helsinki criteria for diagnosis and attribution 2014: recommendations. Scand J Work Environ Health. 2015;41(1):5–15.

    Article  Google Scholar 

  88. Dikensoy O. Mesothelioma due to environmental exposure to erionite in Turkey. Curr Opin Pulm Med. 2008;14(4):322–5.

    Article  CAS  Google Scholar 

  89. Melaiu O, Gemignani F, Landi S. The genetic susceptibility in the development of malignant pleural mesothelioma. J Thorac Dis. 2018;10(Suppl 2):S246–52.

    Article  Google Scholar 

  90. Metintas M, Hillerdal G, Metintas S. Malignant mesothelioma due to environmental exposure to erionite: follow-up of a Turkish emigrant cohort. Eur Respir J. 1999;13(3):523–6.

    Article  CAS  Google Scholar 

  91. Metintas S, Metintas M, Ucgun I, Oner U. Malignant mesothelioma due to environmental exposure to asbestos: follow-up of a Turkish cohort living in a rural area. Chest. 2002;122(6):2224–9.

    Article  Google Scholar 

  92. Ortega-Guerrero MA, Carrasco-Nunez G, Barragan-Campos H, Ortega MR. High incidence of lung cancer and malignant mesothelioma linked to erionite fibre exposure in a rural community in Central Mexico. Occup Environ Med. 2015;72(3):216–8.

    Article  Google Scholar 

  93. Baris I, Simonato L, Artvinli M, Pooley F, Saracci R, Skidmore J, et al. Epidemiological and environmental evidence of the health effects of exposure to erionite fibres: a four-year study in the Cappadocian region of Turkey. Int J Cancer. 1987;39(1):10–7.

    Article  CAS  Google Scholar 

  94. Dogan AU, Baris YI, Dogan M, Emri S, Steele I, Elmishad AG, et al. Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey. Cancer Res. 2006;66(10):5063–8.

    Article  CAS  Google Scholar 

  95. Metintas M, Hillerdal G, Metintas S, Dumortier P. Endemic malignant mesothelioma: exposure to erionite is more important than genetic factors. Arch Environ Occup Health. 2010;65(2):86–93.

    Article  CAS  Google Scholar 

  96. Di Ciaula A. Asbestos ingestion and gastrointestinal cancer: a possible underestimated hazard. Expert Rev Gastroenterol Hepatol. 2017;11(5):419–25.

    Article  Google Scholar 

  97. Berman DW, Crump KS. Update of potency factors for asbestos-related lung cancer and mesothelioma. Crit Rev Toxicol. 2008;38(Suppl 1):1–47.

    Article  CAS  Google Scholar 

  98. Hodgson JT, Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg. 2000;44(8):565–601.

    Article  CAS  Google Scholar 

  99. Monograph I. Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite and anthophyllite). Lyon: International Agency Research on Cancer; 2012 vol. 100C. 

    Google Scholar 

  100. Lenters V, Vermeulen R, Dogger S, Stayner L, Portengen L, Burdorf A, et al. A meta-analysis of asbestos and lung cancer: is better quality exposure assessment associated with steeper slopes of the exposure-response relationships? Environ Health Perspect. 2011;119(11):1547–55.

    Article  Google Scholar 

  101. Feder IS, Tischoff I, Theile A, Schmitz I, Merget R, Tannapfel A. The asbestos fibre burden in human lungs: new insights into the chrysotile debate. Eur Respir J 2017;49(6):1602534.

    Google Scholar 

  102. Finkelstein MM. Reanalysis of non-occupational exposure to asbestos and the risk of pleural mesothelioma. Occup Environ Med. 2018;472–73.

    Google Scholar 

  103. Wang X, Yano E, Lin S, Yu IT, Lan Y, Tse LA, et al. Cancer mortality in Chinese chrysotile asbestos miners: exposure-response relationships. PloS One. 2013;8(8):e71899.

    Google Scholar 

  104. Yano E, Wang ZM, Wang XR, Wang MZ, Lan YJ. Cancer mortality among workers exposed to amphibole-free chrysotile asbestos. Am J Epidemiol. 2001;154(6):538–43.

    Article  CAS  Google Scholar 

  105. Tomashefski JFJ, Cagle PT, Farver CF, Fraire AE. Dail and Hammar’s pulmonary pathology. Vol. 1: Nonneoplastic lung disease (especially Chap. 27 Asbestos, by Hammar SP, Dodson RF); 2007.

    Google Scholar 

  106. Craighead JE, Abraham JL, Churg A, Green FH, Kleinerman J, Pratt PC, et al. The pathology of asbestos-associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema. Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health. Arch Pathol Lab Med. 1982;106(11):544–96.

    Google Scholar 

  107. Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014;15(3):306–16.

    Article  CAS  Google Scholar 

  108. Dodson RF, Hammar SP. Asbestos. Boca Raton, FL, USA: CRC Press; 2011.

    Google Scholar 

  109. Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):511–29.

    Article  CAS  Google Scholar 

  110. Churg A. Deposition and clearance of chrysotile asbestos. Ann Occup Hyg. 1994;38(4):625–33, 424–5.

    Google Scholar 

  111. Finkelstein MM, Dufresne A. Inferences on the kinetics of asbestos deposition and clearance among chrysotile miners and millers. Am J Ind Med. 1999;35(4):401–12.

    Article  CAS  Google Scholar 

  112. Gilham C, Rake C, Burdett G, Nicholson AG, Davison L, Franchini A, et al. Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden. Occup Environ Med. 2015.

    Google Scholar 

  113. Rodelsperger K, Jockel KH, Pohlabeln H, Romer W, Woitowitz HJ. Asbestos and man-made vitreous fibers as risk factors for diffuse malignant mesothelioma: results from a German hospital-based case-control study. Am J Ind Med. 2001;39(3):262–75.

    Article  CAS  Google Scholar 

  114. Hillerdal G. Mesothelioma: cases associated with non-occupational and low dose exposures. Occup Environ Med. 1999;56(8):505–13.

    Article  CAS  Google Scholar 

  115. Magnani C, Dalmasso P, Biggeri A, Ivaldi C, Mirabelli D, Terracini B. Increased risk of malignant mesothelioma of the pleura after residential or domestic exposure to asbestos: a case-control study in Casale Monferrato, Italy. Environ Health Perspect. 2001;109(9):915–9.

    Article  CAS  Google Scholar 

  116. Vianna NJ, Polan AK. Non-occupational exposure to asbestos and malignant mesothelioma in females. Lancet. 1978;1(8073):1061–3.

    Article  CAS  Google Scholar 

  117. Mirabelli D, Cavone D, Merler E, Gennaro V, Romanelli A, Mensi C, et al. Non-occupational exposure to asbestos and malignant mesothelioma in the Italian National Registry of Mesotheliomas. Occup Environ Med. 2010;67(11):792–4.

    Article  CAS  Google Scholar 

  118. Klebe S, Leigh J, Henderson DW, Nurminen M. Asbestos, smoking and lung cancer: an update. Int J Environ Res Public Health. 2019;17(1),258.

    Google Scholar 

  119. Bentvelzen P, Daams JH, Hageman P, Calafat J. Genetic transmission of viruses that incite mammary tumor in mice. Proc Natl Acad Sci U S A. 1970;67(1):377–84.

    Article  CAS  Google Scholar 

  120. Bianchi C, Bianchi T. Susceptibility and resistance in the genesis of asbestos-related mesothelioma. Indian J Occup Environ Med. 2008;12(2):57–60.

    Article  Google Scholar 

  121. Harnden DG. Genetic susceptibility to chemical carcinogens. In: Cooper CS, Grover PL, editors. Chemical carcinogenesis and mutagenesis, vol. II ll. Heidelberg: Springer; 1990.

    Google Scholar 

  122. Neri M, Ugolini D, Dianzani I, Gemignani F, Landi S, Cesario A, et al. Genetic susceptibility to malignant pleural mesothelioma and other asbestos-associated diseases. Mutat Res. 2008;659(1–2):126–36.

    Article  CAS  Google Scholar 

  123. Ugolini D, Neri M, Ceppi M, Cesario A, Dianzani I, Filiberti R, et al. Genetic susceptibility to malignant mesothelioma and exposure to asbestos: the influence of the familial factor. Mutat Res. 2008;658(3):162–71.

    Article  CAS  Google Scholar 

  124. Vineis P. Individual susceptibility to carcinogens. Oncogene. 2004;23(38):6477–83.

    Article  CAS  Google Scholar 

  125. Kielkowski D, Nelson G, Rees D. Risk of mesothelioma from exposure to crocidolite asbestos: a 1995 update of a South African mortality study. Occup Environ Med. 2000;57(8):563–7.

    Article  CAS  Google Scholar 

  126. ATSDR. Agency for toxic substances and disease registry: toxicological profile for asbestos: chemical and physical information; 2001. p. 135–9. https://www.atsdr.cdc.gov/ToxProfiles/tp61-c4.pdf.

  127. Light WG, Wei ET. Surface charge and asbestos toxicity. Nature. 1977;265(5594):537–9.

    Article  CAS  Google Scholar 

  128. Nagai H, Ishihara T, Lee W-H, Ohara H, Okazaki Y, Okawa K, et al. Asbestos surface provides a niche for oxidative modification. Cancer Sci. 2011;102:2118–25.

    Article  CAS  Google Scholar 

  129. Brody AR. How inhaled asbestos causes scarring and cancer. Curr Respir Med Rev. 2018;14:204–17.

    Article  CAS  Google Scholar 

  130. Finkelstein MM. Radiographic asbestosis is not a prerequisite for asbestos-associated lung cancer in Ontario asbestos-cement workers. Am J Ind Med. 1997;32(4):341–8.

    Article  CAS  Google Scholar 

  131. Reid A, de Klerk N, Ambrosini GL, Olsen N, Pang SC, Berry G, et al. The effect of asbestosis on lung cancer risk beyond the dose related effect of asbestos alone. Occup Environ Med. 2005;62(12):885–9.

    Article  CAS  Google Scholar 

  132. Warnock ML, Isenberg W. Asbestos burden and the pathology of lung cancer. Chest. 1986;89(1):20–6.

    Article  CAS  Google Scholar 

  133. Tarin D. Role of the host stroma in cancer and its therapeutic significance. Cancer Metastasis Rev. 2013;32(3–4):553–66.

    Article  CAS  Google Scholar 

  134. Dodson RF. Analysis and relevance of asbestos burden in tissue. In: Dodson RF, Hammar SP, editors. Asbestos. Chap. 3. Boca Raton: CRC Press; 2011.

    Google Scholar 

  135. Goodglick LA, Kane AB. Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo. Cancer Res. 1990;50(16):5153–63.

    CAS  Google Scholar 

  136. Moalli PA, MacDonald JL, Goodglick LA, Kane AB. Acute injury and regeneration of the mesothelium in response to asbestos fibers. Am J Pathol. 1987;128(3):426–45.

    CAS  Google Scholar 

  137. Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, et al. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981;67(5):965–75.

    CAS  Google Scholar 

  138. Dodson RF, Atkinson MA, Levin JL. Asbestos fiber length as related to potential pathogenicity: a critical review. Am J Ind Med. 2003;44(3):291–7.

    Article  Google Scholar 

  139. Baris YI, Artvinli M, Sahin AA. Environmental mesothelioma in Turkey. Ann N Y Acad Sci. 1979;330:423–32.

    Article  CAS  Google Scholar 

  140. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5.

    Article  CAS  Google Scholar 

  141. Carbone M, Adusumilli PS, Alexander HR Jr, Baas P, Bardelli F, Bononi A, et al. Mesothelioma: scientific clues for prevention, diagnosis, and therapy. CA Cancer J Clin. 2019;69(5):402–29.

    Article  Google Scholar 

  142. Napolitano A, Pellegrini L, Dey A, Larson D, Tanji M, Flores EG, et al. Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene. 2016;35(15):1996–2002.

    Article  CAS  Google Scholar 

  143. Kadariya Y, Cheung M, Xu J, Pei J, Sementino E, Menges CW, et al. Bap1 is a bona fide tumor suppressor: genetic evidence from mouse models carrying heterozygous germline Bap1 mutations. Cancer Res. 2016;76(9):2836–44.

    Article  CAS  Google Scholar 

  144. Thurneysen C, Opitz I, Kurtz S, Weder W, Stahel RA, Felley-Bosco E. Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer. 2009;64(2):140–7.

    Article  Google Scholar 

  145. Celsi F, Crovella S, Moura RR, Schneider M, Vita F, Finotto L, et al. Pleural mesothelioma and lung cancer: the role of asbestos exposure and genetic variants in selected iron metabolism and inflammation genes. J Toxicol Environ Health A. 2019;82(20):1088–102.

    Article  CAS  Google Scholar 

  146. Hammar SP, Henderson DW, Klebe S, Dodson RF. The molecular pathogenesis and pathology of malignant mesothelioma. In: Tomashefski JFJ, Cagle PT, Farver CF, Fraire AE, editors. Dail and Hammar pulmonary pathology, vol. 2. Berlin: Springer; 2008. p. 587–99.

    Google Scholar 

  147. Henderson DW, Rodelsperger K, Woitowitz HJ, Leigh J. After Helsinki: a multidisciplinary review of the relationship between asbestos exposure and lung cancer, with emphasis on studies published during 1997–2004. Pathology. 2004;36(6):517–50.

    Article  CAS  Google Scholar 

  148. Lanphear BP, Buncher CR. Latent period for malignant mesothelioma of occupational origin. J Occup Med Official Publ Ind Med Assoc. 1992;34(7):718–21.

    CAS  Google Scholar 

  149. Selikoff IJ, Hammond EC, Seidman H. Latency of asbestos disease among insulation workers in the United States and Canada. Cancer. 1980;46(12):2736–40.

    Article  CAS  Google Scholar 

  150. Marinaccio A, Binazzi A, Cauzillo G, Cavone D, Zotti RD, Ferrante P, et al. Analysis of latency time and its determinants in asbestos related malignant mesothelioma cases of the Italian register. Eur J Cancer. 2007;43(18):2722–8.

    Article  CAS  Google Scholar 

  151. Rossiter CE, Heath JR, Harries PG. Royal Naval Dockyards asbestosis research project: nine-year follow-up study of men exposed to asbestos in Devonport Dockyard. J R Soc Med. 1980;73(5):337–44.

    Article  CAS  Google Scholar 

  152. Hammar SP, Abraham JL. Commentary on pathologic diagnosis of asbestosis and critique of the 2010 Asbestosis Committee of the College of American Pathologists (CAP) and Pulmonary Pathology Society’s (PPS) update on the diagnostic criteria for pathologic asbestosis. Am J Ind Med. 2015;58(10):1034–9.

    Article  Google Scholar 

  153. Roggli VL, Gibbs AR, Attanoos R, Churg A, Popper H, Cagle P, et al. Pathology of asbestosis—an update of the diagnostic criteria: report of the asbestosis committee of the college of American pathologists and pulmonary pathology society. Arch Pathol Lab Med. 2010;134(3):462–80.

    Article  Google Scholar 

  154. Cameron WB. Informal sociology, a casual introduction to sociological thinking. New York: Random House; 1963. p. 13.

    Google Scholar 

  155. Turner FC. Sarcomas at sites of subcutaneously implanted Bakelite disks in rats. J Natl Cancer Inst. 1941;2:81–3.

    CAS  Google Scholar 

  156. Kirkpatrick CJ, Alves A, Kohler H, Kriegsmann J, Bittinger F, Otto M, et al. Biomaterial-induced sarcoma: a novel model to study preneoplastic change. Am J Pathol. 2000;156(4):1455–67.

    Article  CAS  Google Scholar 

  157. Oppenheimer BS, Oppenheimer ET, Danishefsky I, Stout AP, Eirich FR. Further studies of polymers as carcinogenic agents in animals. Cancer Res. 1955;15(5):333–40.

    CAS  Google Scholar 

  158. Shulman J, Wiznitzer T, Neuman Z. A comparative study of sarcoma formation by implanted polyethylene film and mesh in white rats. Br J Plast Surg. 1963;16:336–40.

    Article  CAS  Google Scholar 

  159. Bischoff F, Bryson G. Carcinogenesis through solid state surfaces. Prog Exp Tumor Res. 1964;5:85–133.

    Article  CAS  Google Scholar 

  160. Boone CW. Malignant hemangioendotheliomas produced by subcutaneous inoculation of Balb/3T3 cells attached to glass beads. Science. 1975;188(4183):68–70.

    Article  CAS  Google Scholar 

  161. Boone CW, Scott RE. Plate-induced tumors of BALB/3T3 cells exhibiting foci of differentiation into pericytes, chondrocytes, and fibroblasts. J Supramol Struct. 1980;14(2):233–40.

    Article  CAS  Google Scholar 

  162. Ol’shevskaya LV. Changes in rat connective tissue associated with the development of tumors caused by implantation of cellophane. Bull Exp BioI Med. 1962;52(12):1419–22.

    Google Scholar 

  163. Oppenheimer BS, Oppenheimer ET, Stout AP, Willhite M, Danishefsky I. The latent period in carcinogenesis by plastics in rats and its relation to the presarcomatous stage. Cancer. 1958;11(1):204–13.

    Article  CAS  Google Scholar 

  164. Oppenheimer ET, Willhite M, Danishefsky I, Stout AP. Observations on the effects of powdered polymer in the carcinogenic process. Cancer Res. 1961;21:132–4.

    CAS  Google Scholar 

  165. Vasiliev JM, Olshevskaja LV, Raikhlin NT, Ivanova OJ. Comparative study of alterations induced by 7,12-dimethylbenz[a]anthracene and polymer films in the subcutaneous connective tissue of rats. J Natl Cancer Inst. 1962;28:515–59.

    CAS  Google Scholar 

  166. Nothdurft H. Dber die Sarkomauslosung durch Fremdkorper-Implantationen bei Ratten in Abhangigkeit von der Form der Implantate. Naturwissenschaften. 1955;42:106.

    Article  CAS  Google Scholar 

  167. Oppenheimer BS, Oppenheimer ET, Stout AP, Danishefsky I. Malignant tumors resulting from embedding plastics in rodents. Science. 1953;118(3063):305–6.

    Article  CAS  Google Scholar 

  168. Brand KG, Buoen LC, Johnson KH, Brand I. Etiological factors, stages, and the role of the foreign body in foreign body tumorigenesis: a review. Cancer Res. 1975;35(2):279–86.

    CAS  Google Scholar 

  169. Brand KG, Johnson KH, Buoen LC. Foreign body tumorigenesis. CRC Crit Rev Toxicol. 1976;4(4):353–94.

    Article  CAS  Google Scholar 

  170. Johnson KH, Ghobrial HK, Buoen LC, Brand I, Brand KG. Nonfibroblastic origin of foreign body sarcomas implicated by histological and electron microscopic studies. Cancer Res. 1973;33(12):3139–54.

    CAS  Google Scholar 

  171. Thomassen MJ, Buoen LC, Brand KG. Foreign-body tumorigenesis: number, distribution, and cell density of preneoplastic clones. J Natl Cancer Inst. 1975;54(1):203–7.

    Article  CAS  Google Scholar 

  172. Shelton E, Evans VJ, Parker GA. Malignant transformation of mouse connective tissue grown in diffusion chambers. J Natl Cancer Inst. 1963;30:377–91.

    CAS  Google Scholar 

  173. Wartiovaara J, Nordling S, Lehtonen E, Saxen L. Transfilter induction of kidney tubules: correlation with cytoplasmic penetration into nucleopore filters. J Embryol Exp Morphol. 1974;31(3):667–82.

    CAS  Google Scholar 

  174. Spemann H. Embryonic induction and development. New Haven: Yale University Press; 1938.

    Book  Google Scholar 

  175. Toivonen S, Tarin D, Saxen L. The transmission of morphogenetic signals from amphibian mesoderm to ectoderm in primary induction. Differentiation. 1976;5(1):49–55.

    Article  CAS  Google Scholar 

  176. Toivonen S, Tarin D, Saxen L, Tarin PJ, Wartiovaara J. Transfilter studies on neural induction in the newt. Differentiation. 1975;4(1):1–7.

    Article  CAS  Google Scholar 

  177. Bates RR, Klein M. Importance of a smooth surface in carcinogenesis by plastic film. J Natl Cancer Inst. 1966;37(2):145–51.

    CAS  Google Scholar 

  178. Brand KG, Buoen LC, Brand I. Foreign-body tumorigenesis induced by glass and smooth and rough plastic. Comparative study of preneoplastic events. J Natl Cancer Inst. 1975;55(2):319–22.

    Google Scholar 

  179. Brand KG. Do implanted medical devices cause cancer? J Biomater Appl. 1994;8(4):325–43.

    Article  CAS  Google Scholar 

  180. Morgan RW, Elcock M. Artificial implants and soft tissue sarcomas. J Clin Epidemiol. 1995;48(4):545–9.

    Article  CAS  Google Scholar 

  181. O’Connell TX, Fee HJ, Golding A. Sarcoma associated with Dacron prosthetic material: case report and review of the literature. J Thorac Cardiovasc Surg. 1976;72(1):94–6.

    Article  CAS  Google Scholar 

  182. Garg N, Lewis MA, Maleszewski JJ, Kalra M. Intimal sarcoma in an inflammatory aneurysm after endovascular aneurysm repair. J Vasc Surg. 2012;55(4):1134–7.

    Article  Google Scholar 

  183. Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13(4):397–411.

    Article  CAS  Google Scholar 

  184. Rous P. A transmissible avian neoplasm (sarcoma of the common fowl). J Exp Med. 1910;12(5):696–705.

    Google Scholar 

  185. Falcaro M, Castañon A, Ndlela B, Checchi M, Soldan K, Lopez-Bernal J, et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet. 2021;398(10316):2084–2092.

    Google Scholar 

  186. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1(8390):1311–5.

    Article  CAS  Google Scholar 

  187. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991;325(16):1127–31.

    Article  CAS  Google Scholar 

  188. IARC. Evaluation of carcinogenic risks to humans: schistosomes, liver flukes and Helicobacter pylori. 1994;61:1–279.

    Google Scholar 

  189. zur Hausen H. The search for infectious causes of human cancers: where and why. Virology. 2009;392(1):1–10.

    Google Scholar 

  190. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180–90.

    Article  Google Scholar 

  191. Johnson ES. Cancer mortality in workers employed in cattle, pigs, and sheep slaughtering and processing plants. Environ Int. 2011;37(5):950–9.

    Article  CAS  Google Scholar 

  192. Johnson ES, Cardarelli K, Jadhav S, Chedjieu IP, Faramawi M, Fischbach L, et al. Cancer mortality in the meat and delicatessen departments of supermarkets (1950–2006). Environ Int. 2015;77:70–5.

    Article  CAS  Google Scholar 

  193. Linnerth-Petrik NM, Walsh SR, Bogner PN, Morrison C, Wootton SK. Jaagsiekte sheep retrovirus detected in human lung cancer tissue arrays. BMC Res Notes. 2014;7:160.

    Article  Google Scholar 

  194. Palmarini M, Sharp JM, de las Heras M, Fan H. Jaagsiekte sheep retrovirus is necessary and sufficient to induce a contagious lung cancer in sheep. J Virol. 1999;73(8):6964–72.

    Google Scholar 

  195. Parent L. Retrovirus-cell interactions. Cambridge: Academic Press; 2018.

    Google Scholar 

  196. Jacobs FM, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. 2014;516(7530):242–5.

    Article  CAS  Google Scholar 

  197. Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol. 2010;262(4):698–710.

    Article  Google Scholar 

  198. tenOever BR. The evolution of antiviral defense systems. Cell Host Microbe. 2016;19(2):142–9.

    Article  CAS  Google Scholar 

  199. Albritton LM. Retrovirus receptor interactions and entry. Retrovirus-cell interactions. Amsterdam: Elsevier; 2018. p. 1–49.

    Google Scholar 

  200. Goff SP. Cellular factors that regulate retrovirus uncoating and reverse transcription. Retrovirus-cell interactions. Amsterdam: Elsevier; 2018. p. 51–112.

    Google Scholar 

  201. Ringehan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans Roy Soc B Biol Sci. 2017;372(1732):20160274.

    Article  Google Scholar 

  202. Trepo C, Chan HL, Lok A. Hepatitis B virus infection. Lancet. 2014;384(9959):2053–63.

    Article  CAS  Google Scholar 

  203. Li W. The hepatitis B virus receptor. Annu Rev Cell Dev Biol. 2015;31:125–47.

    Article  CAS  Google Scholar 

  204. Henkler F, Hoare J, Waseem N, Goldin RD, McGarvey MJ, Koshy R, et al. Intracellular localization of the hepatitis B virus HBx protein. J Gen Virol. 2001;82(Pt 4):871–82.

    Article  CAS  Google Scholar 

  205. Zhu YZ, Qian XJ, Zhao P, Qi ZT. How hepatitis C virus invades hepatocytes: the mystery of viral entry. World J Gastroenterol. 2014;20(13):3457–67.

    Article  CAS  Google Scholar 

  206. Lin MV, King LY, Chung RT. Hepatitis C virus-associated cancer. Annu Rev Pathol. 2015;10:345–70.

    Article  CAS  Google Scholar 

  207. Chesson HW, Dunne EF, Hariri S, Markowitz LE. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex Transm Dis. 2014;41(11):660–4.

    Article  Google Scholar 

  208. Rodriguez AC, Schiffman M, Herrero R, Wacholder S, Hildesheim A, Castle PE, et al. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J Natl Cancer Inst. 2008;100(7):513–7.

    Article  Google Scholar 

  209. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global picture. Eur J Cancer. 2001;37(Suppl 8):S4–66.

    Google Scholar 

  210. Pecorelli S, Favalli G, Zigliani L, Odicino F. Cancer in women. Int J Gynaecol Obstet. 2003;82(3):369–79.

    Article  CAS  Google Scholar 

  211. Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010;118(1 Suppl):S12-17.

    Article  CAS  Google Scholar 

  212. Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP. Mechanisms of cell entry by human papillomaviruses: an overview. Virol J. 2010;7:11.

    Article  Google Scholar 

  213. Zhang P, Monteiro da Silva G, Deatherage C, Burd C, DiMaio D. Cell-penetrating peptide mediates intracellular membrane passage of human papillomavirus L2 protein to trigger retrograde trafficking. Cell. 2018;174(6):1465–76 e13.

    Google Scholar 

  214. Hebner CM, Laimins LA. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol. 2006;16(2):83–97.

    Article  CAS  Google Scholar 

  215. Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004;10(3):803–21.

    Article  CAS  Google Scholar 

  216. Tobias ES. The molecular biology of cancer. In: Rimoin DL, Pyeritz RE, Korf BR, editors. Emery and Rimoin’s principles and practice of medical genetics. Oxford, UK: Academic Press; 2013. p. 498–542.

    Google Scholar 

  217. Bushman FD. Retroviral insertional mutagenesis in humans: evidence for four genetic mechanisms promoting expansion of cell clones. Mol Ther. 2020;28(2):352–6.

    Article  CAS  Google Scholar 

  218. Ohno H. Intestinal M cells. J Biochem. 2016;159(2):151–60.

    Article  CAS  Google Scholar 

  219. Ross SR. Using genetics to probe host-virus interactions; the mouse mammary tumor virus model. Microbes Infect. 2000;2(10):1215–23.

    Article  CAS  Google Scholar 

  220. Ross SR. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses. 2010;2(9):2000–12.

    Article  CAS  Google Scholar 

  221. Lawson JS, Glenn WK. Evidence for a causal role by mouse mammary tumour-like virus in human breast cancer. NPJ Breast Cancer. 2019;5:40.

    Article  Google Scholar 

  222. Morales-Sanchez A, Fuentes-Panana EM. Human viruses and cancer. Viruses. 2014;6(10):4047–79.

    Article  CAS  Google Scholar 

  223. Khan G, Hashim MJ. Global burden of deaths from Epstein-Barr virus attributable malignancies 1990–2010. Infect Agent Cancer. 2014;9(1):38.

    Article  Google Scholar 

  224. Liao JB. Viruses and human cancer. Yale J Biol Med. 2006;79(3–4):115–22.

    CAS  Google Scholar 

  225. Kanda T, Goto T, Hirotsu Y, Moriyama M, Omata M. Molecular mechanisms driving progression of liver cirrhosis towards hepatocellular carcinoma in chronic hepatitis B and C infections: a review. Int J Mol Sci. 2019;20(6).

    Google Scholar 

  226. Doll R. Hazards of ionising radiation: 100 years of observations on man. Br J Cancer. 1995;72(6):1339–49.

    Article  CAS  Google Scholar 

  227. Gilbert ES. Ionising radiation and cancer risks: what have we learned from epidemiology? Int J Radiat Biol. 2009;85(6):467–82.

    Article  CAS  Google Scholar 

  228. Lehmann AR, McGibbon D, Stefanini M. Xeroderma pigmentosum. Orphanet J Rare Dis. 2011;6:70.

    Article  Google Scholar 

  229. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325(26):1831–6.

    Article  CAS  Google Scholar 

  230. Chistiakov DA, Voronova NV, Chistiakov PA. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol. 2008;47(5):809–24.

    Article  CAS  Google Scholar 

  231. Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51.

    Google Scholar 

  232. Picano E. Risk of cancer from diagnostic X-rays. Lancet. 2004;363(9424):1909–10; author reply 10.

    Google Scholar 

  233. Shah DJ, Sachs RK, Wilson DJ. Radiation-induced cancer: a modern view. Br J Radiol. 2012;85(1020):e1166–73.

    Article  CAS  Google Scholar 

  234. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci U S A. 2003;100(24):13761–6.

    Article  CAS  Google Scholar 

  235. Lee D. Genetic basis of mesothelioma—more than asbestos exposure. J Thorac Oncol. 2016;11(2):e27-28.

    Article  Google Scholar 

  236. Friedewald WF, Rous P. The initiating and promoting elements in tumor production: an analysis of the effects of tar, benzpyrene, and methylcholanthrene on rabbit skin. J Exp Med. 1944;80(2):101–26.

    Article  CAS  Google Scholar 

  237. Berenblum I, Shubik P. The role of croton oil applications, associated with a single painting of a carcinogen, in tumour induction of the mouse’s skin. Br J Cancer. 1947;1(4):379–82.

    Article  CAS  Google Scholar 

  238. Berenblum I, Shubik P. The persistence of latent tumour cells induced in the mouse’s skin by a single application of 9:10-dimethyl-1:2-benzanthracene. Br J Cancer. 1949;3(3):384–6.

    Article  CAS  Google Scholar 

  239. Berenblum I, Shubik P. An experimental study of the initiating state of carcinogenesis, and a re-examination of the somatic cell mutation theory of cancer. Br J Cancer. 1949;3(1):109–18.

    Article  CAS  Google Scholar 

  240. Mottram JC. A sensitising factor in experimental blastogenesis. J Pathol Bacteriol. 1944;56:181–7.

    Article  CAS  Google Scholar 

  241. Mottram JC. A developing factor in experimental blastogenesis. J Pathol Bacteriol. 1944;56:181–7.

    Article  CAS  Google Scholar 

  242. Berenblum I. The mechanism of carcinogenesis. Can Res. 1941;1:807–14.

    CAS  Google Scholar 

  243. Tarin D. Morphological studies on the mechanism of carcinogenesis. In: Tarin D, editor. Tissue interactions in carcinogenesis. London: Academic Press; 1972. p. 227–89.

    Google Scholar 

  244. Orr JW. The changes antecedent to tumour formation during the treatment of mouse skin with carcinogenic hydrocarbons. J Pathol Bacteriol. 1938;46:495–515.

    Article  Google Scholar 

  245. Tarin D. Sequential electron microscopical study of experimental mouse skin carcinogenesis. Int J Cancer. 1967;2(3):195–211.

    Article  CAS  Google Scholar 

  246. Pitot HC, Goldsworthy T, Moran S. The natural history of carcinogenesis: implications of experimental carcinogenesis in the genesis of human cancer. J Supramol Struct Cell Biochem. 1981;17(2):133–46.

    Article  CAS  Google Scholar 

  247. Kaufmann WK, Kaufman DG. Cell cycle control, DNA repair and initiation of carcinogenesis. FASEB J. 1993;7(12):1188–91.

    Article  CAS  Google Scholar 

  248. Johnson LD, Nickerson RJ, Easterday CL, Stuart RS, Hertig AT. Epidemiologic evidence for the spectrum of change from dysplasia through carcinoma in situ to invasive cancer. Cancer. 1968;22(5):901–14.

    Article  CAS  Google Scholar 

  249. Risio M. The natural history of adenomas. Best Pract Res Clin Gastroenterol. 2010;24(4):397–406.

    Article  Google Scholar 

  250. Malarkey DE, Hoenerhoff M, Maronpot RR. Carcinogenesis: mechanisms and manifestations. In: Haschek WM, Rousseaux CG, Wallig MA, editors. Haschek and Rousseaux’s handbook of toxicologic pathology. Amsterdam: Elsevier; 2013. p. 107–46.

    Chapter  Google Scholar 

  251. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  CAS  Google Scholar 

  252. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  Google Scholar 

  253. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  Google Scholar 

  254. Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med. 1990;323(18):1228–33.

    Google Scholar 

  255. Reid BJ, Weinstein WM. Barrett’s esophagus and adenocarcinoma. Annu Rev Med. 1987;38:477–92.

    Article  CAS  Google Scholar 

  256. Kudo Y, Kamisawa T, Anjiki H, Takuma K, Egawa N. Incidence of and risk factors for developing pancreatic cancer in patients with chronic pancreatitis. Hepatogastroenterology. 2011;58(106):609–11.

    Google Scholar 

  257. Tarin D. Clinical and biological implications of the tumor microenvironment. Cancer Microenviron. 2012;5(2):95–112.

    Article  CAS  Google Scholar 

  258. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    Google Scholar 

  259. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7(3):211–7.

    Article  CAS  Google Scholar 

  260. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol. 2012;65(2):159–63.

    Article  CAS  Google Scholar 

  261. Nash JR, Price JE, Tarin D. Macrophage content and colony-forming potential in mouse mammary carcinomas. Br J Cancer. 1981;43(4):478–85.

    Article  CAS  Google Scholar 

  262. Orr J. Changes antecedent to tumour formation during the treatment of mouse skin with carcinogenic hydrocarbons. J Pathol Bacteriol. 1938;46:495–515.

    Article  Google Scholar 

  263. Theoharides TC, Conti P. Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol. 2004;25(5):235–41.

    Article  CAS  Google Scholar 

  264. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  Google Scholar 

  265. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat. 2012;132(2):545–53.

    Article  CAS  Google Scholar 

  266. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Lee AH, Ellis IO, et al. An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat. 2011;127(1):99–108.

    Article  CAS  Google Scholar 

  267. Talmadge JE. Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol. 2011;21(2):131–8.

    Article  CAS  Google Scholar 

  268. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41.

    Article  CAS  Google Scholar 

  269. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117(5):1175–83.

    Article  CAS  Google Scholar 

  270. Tarin D. Inappropriate gene expression in human cancer and its far-reaching biological and clinical significance. Cancer Metastasis Rev. 2011.

    Google Scholar 

  271. King MC, Marks JH, Mandell JB, et al. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.

    Google Scholar 

  272. Tarin D. Tissue interactions in carcinogenesis. London: Academic Press; 1972.

    Google Scholar 

  273. Frithiof L. Ultrastructural changes at the epithelial stromal junction in human oral pre-invasive and invasive carcinoma. In: Tarin D, editor. Tissue interactions in carcinogenesis. London: Academic Press; 1972. p. 161–89.

    Google Scholar 

  274. Smith CJ. The epithelial-connective tissue junction in the pathogenesis of human and experimental oral cancer. In: Tarin D, editor. Tissue interactions in carcinogenesis. London: Academic Press; 1972. p. 191–225.

    Google Scholar 

  275. Sugar J. Ultrastructural and histochemical changes during the development of cancer in various human organs. In: Tarin D, editor. Tissue interactions in carcinogenesis. London: Academic Press; 1972. p. 127–60.

    Google Scholar 

  276. Billingham RE, Orr JW, Woodhouse DL. Transplantation of skin components during chemical carcinogenesis with 20-methylcholanthrene. Br J Cancer. 1951;5(4):417–32.

    Article  CAS  Google Scholar 

  277. Dawe C. Epithelial-mesenchymal interactions in relation to the genesis of polyoma virus-induced tumors of mouse salivary gland. In: Tarin D, editor. Tissue interactions in carcinogenesis. London: Academic Press; 1972. p. 305–58.

    Google Scholar 

  278. Joesting MS, Perrin S, Elenbaas B, Fawell SE, Rubin JS, Franco OE, et al. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res. 2005;65(22):10423–30.

    Article  CAS  Google Scholar 

  279. DeCosse JJ, Gossens C, Kuzma JF, Unsworth BR. Embryonic inductive tissues that cause histologic differentiation of murine mammary carcinoma in vitro. J Natl Cancer Inst. 1975;54(4):913–22.

    CAS  Google Scholar 

  280. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.

    Article  CAS  Google Scholar 

  281. Pinkus H. Histological evidence of disturbed tissue interactions in human pre-neoplastic and neoplastic skin. In: Tarin D, editor. Tissue interactions in carcinogenesis. London: Academic Press; 1972. p. 95–126.

    Google Scholar 

  282. Tarin D. Further electron microscopic studies on the mechanism of carcinogenesis: the specificity of the changes in carcinogen-treated mouse skin. Int J Cancer. 1968;3(6):734–42.

    Article  CAS  Google Scholar 

  283. Tarin D. Fine structure of murine mammary tumours: the relationship between epithelium and connective tissue in neoplasms induced by various agents. Br J Cancer. 1969;23(2):417–25.

    Article  CAS  Google Scholar 

  284. Nickerson HJ, Matthay KK, Seeger RC, Brodeur GM, Shimada H, Perez C, et al. Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: a Children’s Cancer Group study. J Clin Oncol. 2000;18(3):477–86.

    Article  CAS  Google Scholar 

  285. Cole WH. Spontaneous regression of cancer and the importance of finding its cause. Natl Cancer Inst Monogr. 1976;44:5–9.

    CAS  Google Scholar 

  286. Cole WH. Relationship of causative factors in spontaneous regression of cancer to immunologic factors possibly effective in cancer. J Surg Oncol. 1976;8(5):391–411.

    Article  CAS  Google Scholar 

  287. O’Regan B, Hirshberg C. Spontaneous remission. Sausalito, CA: Institute of Noetic Sciences; 1993.

    Google Scholar 

  288. Castleman B. Monograph on spontaneous regression of cancer. Betheda, MD, USA: National Cancer Institute; 1976.

    Google Scholar 

  289. Esserman L, Shieh Y, Thompson I. Rethinking screening for breast cancer and prostate cancer. JAMA. 2009;302(15):1685–92.

    Article  CAS  Google Scholar 

  290. Sanders ME, Schuyler PA, Dupont WD, Page DL. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer. 2005;103(12):2481–4.

    Article  Google Scholar 

  291. Price JE, Carr D, Tarin D. Spontaneous and induced metastasis of naturally occurring tumors in mice: analysis of cell shedding into the blood. J Natl Cancer Inst. 1984;73(6):1319–26.

    CAS  Google Scholar 

  292. Christodoulou C, Spencer JA, Yeh S-CA, Turcotte R, Kokkaliaris KD, Panero R, et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature. 2020;578(7794):278–83.

    Google Scholar 

  293. Walker MR, Patel KK, Stappenbeck TS. The stem cell niche. J Pathol. 2009;217(2):169–80.

    Article  CAS  Google Scholar 

  294. Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9(1):11–21.

    Article  CAS  Google Scholar 

  295. Greicius G, Virshup DM. Stromal control of intestinal development and the stem cell niche. Differentiation. 2019;108:8–16.

    Article  CAS  Google Scholar 

  296. Clark DP, Pazdernik NJ. Cloning and stem cells. In: Biotechnology. 2nd ed. Chap. 18. Amsterdam: Elsevier; 2018. p. 565–591.

    Google Scholar 

  297. Stocum DL. Regeneration of digestive, respiratory and urinary tissues. Chap. 5. In: Regenerative biology and medicine. London: Academic Press; 2012. p. 99–126.

    Google Scholar 

  298. Gardner RL. Pluripotential stem cells from vertebrate embryos: present perspective and future challenges. In: Lanza R, Atala A, editors. Handbook of stem cells. 2nd ed. Amsterdam: Elsevier; 2013.

    Google Scholar 

  299. Lanza R, Atala A. Handbook of stem cells. 2nd ed. Amsterdam: Elsevier; 2013.

    Google Scholar 

  300. Potten CS, Wilson JW. The development of epithelial stem cell concepts. In: Lanza R, Atala A, editors. Handbook of stem cells. 2nd ed. Chap. 39. Amsterdam: Elsevier; 2013. p. 451–61.

    Google Scholar 

  301. Yang FC, Chen S, Clegg T, Li X, Morgan T, Estwick SA, et al. Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet. 2006;15(16):2421–37.

    Article  CAS  Google Scholar 

  302. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296(5569):920–2.

    Article  CAS  Google Scholar 

  303. Suzuki M, Mose ES, Montel V, Tarin D. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am J Pathol. 2006;169(2):673–81.

    Article  CAS  Google Scholar 

  304. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432(7015):332–7.

    Article  CAS  Google Scholar 

  305. Cunha GR, Hayward SW, Wang YZ. Role of stroma in carcinogenesis of the prostate. Differentiation. 2002;70(9–10):473–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tarin .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tarin, D. (2023). Causes of Cancer and Mechanisms of Carcinogenesis. In: Understanding Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-97393-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97393-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97392-6

  • Online ISBN: 978-3-030-97393-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics