Skip to main content

Ion Beam Figuring and Smoothing

  • Chapter
  • First Online:
Low-Energy Ion Irradiation of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 324))

  • 646 Accesses

Abstract

The technologies, ion beam figuring (IBF) and ion beam-induced smoothing (IBS), are used to precisely remove imperfections or correct surface shape in a predetermined and controlled manner. The IBF method uses the computer-aided codes to realize the desired surface topography, where a spatially and temporally stable ion beam is passed vertically over the surface at a fixed distance in a high-vacuum environment. The main input variables of this approach, the ion beam removal function, the surface error function and the dwell time procedure, are presented. The various algorithms (Fourier transform algorithm, iterative dwell algorithm, matrix based algorithm, Bayesian algorithm) for determining the dwell time of the ion beam over each object point to be machined and the effect of temperature during the figuring procedure are discussed. The application of IBF technology for the correction of shape errors on surfaces to achieve depth accuracies in the nanometer and sub-nanometer range over the entire spectrum of the spatial surface wavelength is demonstrated with selected examples. Ion beam-induced smoothing (IBS) focuses on feature processing (spatial wavelength < a few microns and height amplitudes on the order of nanometers) with the aim of producing ultra-smooth surfaces. In addition to direct smoothing by low-energy ions, the technologies of smoothing with a planarization layer and smoothing by means of ions incident at a very oblique angle have also become established. Atomistic surface relaxation processes such as ion beam enhanced viscous flow, thermally activated surface diffusion, effective ion-induced diffusion, and ballistic mass redistribution can contribute to the smoothing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Nobes, J.S. Colligon, G. Carter, The equilibrium topography of sputtered amorphous solids. J. Mater Sci. 4, 730–733 (1969)

    Article  Google Scholar 

  2. G. Carter, J.S. Colligon, M.J. Nobes, The equilibrium topography of sputtered amorphous solids II. J. Mater Sci. 6, 115–117 (1971)

    Article  CAS  Google Scholar 

  3. G. Carter, The physics and applications of ion beam erosion. J. Phys. D: Appl. Phys. 34, R1–R22 (2001)

    Article  CAS  Google Scholar 

  4. F.C. Frank, On the kinematic theory of crystal growth and dissolution processes II. Z. Phys. Chem. 77, 84–92 (1972)

    Article  CAS  Google Scholar 

  5. G. Carter, Theory of surface erosion and growth, in Erosion and Growth of Solids Stimulated by Atom and Ion Beams, ed. by G. Kiriakidis, G. Carter, J.L. Whitton, (Proceed. NATO ASI Series E 112, Martinus Nijhoff’, Dordrecht, 1986) pp. 70–97

    Google Scholar 

  6. A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, F. Bigl, Precision optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring. Proc. SPIE 4451, 242–248 (2001)

    Article  CAS  Google Scholar 

  7. T. Hänsel, P. Seidel, A. Nickel, A. Schindler, B. Rauschenbach, Deterministic ion beam figuring of surface errors in sub-millimeter spatial wavelength range, in Proceeding of 6th EUSPAN International Conferences Baden/Wien (2006)

    Google Scholar 

  8. A. Schindler, T. Hänsel, A. Nickel, F. Frost, H.-J. Thomas, H. Neumann, G. Seidenkranz, R. Schwabe, S. Gürtler, S. Görsch, A. Bogatz, B. Rauschenbach, Ion beam figuring (IBF) solutions for high performance optics surface finishing from meter to millimeter spatial wavelength range, in Proceeding of 3rd International Conferences on Leading Edge Manufacturing in 21st century, Nagoya (2005)

    Google Scholar 

  9. N. Savvides, A. Knittel, Ion beam figuring of optics, CSIRO report CIP2152 (2004).

    Google Scholar 

  10. X. Xuhui, L. Shengyi, Ion beam figuring technology, in Handbook of Manufacturing Engineering and Technology, ed. by A.Y.C. Nee, (Springer, London 2015), pp. 1343–1390

    Google Scholar 

  11. A. Schindler, T. Hänsel, D. Flamm, G. Boehm, F. Frost, R. Fechner, B. Rauschenbach, Ion beam and plasma jet etching for optical component fabrication. Proc SPIE 4440, 217–227 (2001)

    Article  CAS  Google Scholar 

  12. R. Castaing, P. Laborie, Aspects partieuliers de l`etude des métaux en coupes mines. Compt. Rend. 238, 1885–1887 (1954)

    CAS  Google Scholar 

  13. A.B. Meinel, S. Bashkin, D.A. Loomis, Controlled figuring of optical surfaces by energetic ionic beams. Appl. Optics 4, 1647–1647 (1965)

    Article  Google Scholar 

  14. J.B. Schroeder, S. Bashkin, J.F. Nester, Ionic polishing of optical surfaces. Appl. Optics 5, 1031–1034 (1966)

    Article  CAS  Google Scholar 

  15. P.H. Schmidt, E.G. Spencer, E.M. Walters, Ion milling of magnetic oxide platelets for the removal of surface and near-surface imperfections and defects. J. Appl. Phys. 41, 4740–4742 (1970)

    Article  CAS  Google Scholar 

  16. B. Schroeder, H.D. Dieselman, J.W. Douglass, Technical feasibility of figuring optical surfaces by ion polishing. Appl. Optics 10, 295–299 (1970)

    Article  CAS  Google Scholar 

  17. R.A. House II., J.R. Bettis, A.H. Guenther, Appl. Optics 16, 1486–1488 (1977)

    Article  CAS  Google Scholar 

  18. D.T. Hawkins, Ion milling (ion beam etching), 1954–1975: a bibliography. J. Vac. Sci. Technol. 12, 1389–1397 (1975)

    Article  Google Scholar 

  19. H.R. Kaufman, P.D. Reader, G.C. Isaacson, Ion sources for ion machining applications. AIAA J. 15, 843–847 (1977)

    Article  CAS  Google Scholar 

  20. S.R. Wilson, J.R. McNeil, Surface figuring using neutral ion beams. Proc. SPIE 966, 74–81 (1989)

    Article  Google Scholar 

  21. L.N. Allen, H.W. Romig, Demonstration of an ion figuring process. Proc. SPIE 1333, 22–33 (1990)

    Article  Google Scholar 

  22. R.L. Seliger, W.P. Fleming, Focused ion beams in microfabrication. J. Appl. Phys. 45, 1416–1422 (1974)

    Article  CAS  Google Scholar 

  23. P. Sigmund, Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184, 383–416 (1969) and Y. Yamamura, An empirical formula for angular dependence of sputtering yields. Rad. Effects 80, 57–72 (1984)

    Google Scholar 

  24. S. Wilson, J. McNeil, Neutral ion beam figuring of large optical surfaces. Curr. Dev. Optical Eng. II(818), 320–325 (1987)

    Google Scholar 

  25. T.W. Drueding, T.G. Bifano, S.C. Fawcett, Contouring algorithm for ion figuring. Precis. Eng. 17, 10–21 (1995)

    Article  Google Scholar 

  26. T. Wang, L. Huang, H. Kang, H. Choi, D.W. Kim, K. Tayabaly, M. Idir, Transform-based dwell time algorithm for ultra-precision ion beam figuring of synchrotron mirrors. Sci. Rep 10, 813 (2020)

    Google Scholar 

  27. T. Wang, L. Huang, M. Vescovi, D. Kuhne, K. Tayabaly, N. Bouet, M. Idir, Study on an effective one-dimensional ion-beam figuring method. Opt. Express 27, 15368–15381 (2019)

    Article  CAS  Google Scholar 

  28. https://zenodo.org/record/3834856

  29. S. Wilson, D. Reicher, C. Kranenberg, J. McNeil, P. White, P. Martin, D. McCready, Ion beam milling of fused silica for window fabrication, in Laser-Induced Damage in Optical Materials, ed. by H. Bennett, L. Chase, A. Guenther, B. Newnam, M. Soileau, (West Conshohocken), ASTM International 1441, 82–86 (1991)

    Google Scholar 

  30. P.H. van Cittert, Zum Einfluss der Spaltbreite auf die Intensitätsverteilung in Spektrallinien II. Z. Phys. 69, 298–308 (1931)

    Article  Google Scholar 

  31. W.H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. 62, 55–59 (1972) and L.B. Lucy, An iterative technique for the rectification of observed distributions. Astronom. J. 79, 745–754 (1974)

    Google Scholar 

  32. R. Gold, An iterative unfolding method for response matrices, (Argonne National Laboratory Report ANL-6984, 1964)

    Google Scholar 

  33. Ch. Xu, I, Aissaoui, S. Jacquey, Algebraic analysis of the Van Cittert iterative method of deconvolution with a general relaxation factor. J. Opt. Soc. Am. A 11 (1994) 2804-2808

    Google Scholar 

  34. J.F. Wu, Z.W. Lu, H.X. Zhang, T.S. Wang, Dwell time algorithm in ion beam figuring. Appl. Opt. 48, 3930–3937 (2009)

    Article  Google Scholar 

  35. T. Hänsel, A. Nickel, A. Schindler, Ion beam figuring of strongly curved surfaces with a (x, y, z) linear three-axes system, OAS Tech. Digest (Opt. Soc. Am., 2008) paper JWD6

    Google Scholar 

  36. Y.S. Ghim, S.-J. Shin, H.-G. Rhee, H.-S. Yang, Y.-M. Lee, Ultra-precision surface polishing using ion beam figuring. Proc. SPIE 8416 (2012)

    Google Scholar 

  37. A. Haberl, R. Rascher, Yet one more dwell time algorithm. Proc. SPIE 103026 (2017)

    Google Scholar 

  38. C.L. Carnal, C.M. Egert, K.W. Hylton, Advanced matrix-based algorithm for ion-beam milling of optical components. Proc. SPIE 1752, 54–63 (1992)

    Article  Google Scholar 

  39. L. Zhou, Y. Dai, X. Xie, C. Jiao, S. Li, Model and method to determine dwell time in ion beam figuring. Nanotechnol. Precis. Eng. 5, 107–112 (2007)

    Google Scholar 

  40. C.C. Paige, M.A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math Softw 8, 43–71 (1982)

    Article  Google Scholar 

  41. C. Jiao, S. Li, X. Xie, Algorithm for ion beam figuring of low-gradient mirrors. Appl. Opt. 48, 4090–4096 (2009)

    Article  Google Scholar 

  42. J.M. Bernardo, A.F.M. Smith, Bayesian theory (Wiley, Chichester, 2000)

    Google Scholar 

  43. M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, G. Pareschi, G. Sironi, Ion beam figuring technique used as final step in the manufacturing of the optics for the E-ELT. Mem. Soc. Astro. 86, 412–415 (2015)

    Google Scholar 

  44. P. Gailly, J.P. Collette, L. Renson, J.-P. Tock, Ion beam figuring of small BK7 and zerodur optics: thermal effects. Proc. SPIE 3739 (1999)

    Google Scholar 

  45. X. Xie, Y. Hao, L. Zhou, Y. Dai, S. Li, High thermal expansion optical component machined by ion beam figuring. Opt. Eng. 51, 013401 (2012)

    Google Scholar 

  46. F. Li, X. Xie, G. Tie, H. Hu, L. Zhou, Research on temperature field of KDP crystal under ion beam cleaning. Appl. Opt. 56, 4888–5489 (2016)

    Article  Google Scholar 

  47. P.D. Parry, Target heating during ion implantation, J. Vac. Sci. Technol. 13, 622–629 (1976) and Localized substrate heating during ion implantation, 15, 111–115 (1978)

    Google Scholar 

  48. A. Schindler, T. Hänsel, F. Frost, G. Böhm, W. Frank, A. Nickel, T. Arnold, R. Schwabe, S. Gürtler, S. Görsch, B. Rauschenbach, Modern methods of highly precise figuring and polishing, in Proceed of 3rd DGG Symposium, Glass Science and Technology (vol. 78 C, 2005), pp. 111–114

    Google Scholar 

  49. M. Weiser, Quantitative investigations of the removal of glass material by low energy ion beams with the use of optical interferometry. Nucl. Instr. Meth. Phys. Res. B 80(81), 1174–1177 (1993)

    Article  Google Scholar 

  50. T. Hänsel, F. Frost, A. Nickel, A. Schindler, Ultra-precision surface finishing by ion beam techniques. Vak. Forsch. Praxis 19, 24–30 (2007)

    Article  Google Scholar 

  51. T. Hänsel, A. Nickel, A. Schindler, H.-J. Thomas, Ion beam figuring surface finishing of x-ray and synchrotron beam line optics using stitching interferometry for the surface topography measurement, in Conference on Optical Society America (OSA, Rochester 2004), Paper OMD 5

    Google Scholar 

  52. A. Schindler, T. Hänsel, F. Frost, A. Nickel, R. Fechner, B. Rauschenbach, Recent achievements on ion techniques for optics fabrication, in Conference on Optical Society America (OSA, Rochester 2004), Paper OMC 3

    Google Scholar 

  53. L.N. Allen, J.J. Hannon, R.W. Wambach, Final surface error correction of an off-axis aspheric petal by ion figuring. Proc. SPIE 1543 (1992)

    Google Scholar 

  54. A. Schindler, F. Frost, A. Nickel, T. Hänsel, B. Rauschenbach, Ion beam assisted smoothing of surfaces, in Proceeding of 1st International Conference on Micro- and Nano-Technology Vienna (2005), pp. 367–374 and A. Schindler, Tutorial on recent advances in ion beam and plasma jet processing, (Optical Fabrication and Testing (OAS), Paper OW4D.1, 2012)   pp. 43–45

    Google Scholar 

  55. R.E. Wilson, Ionic polishing of fused silica and glass. Opt. Technol. 2, 19–26 (1970)

    Article  Google Scholar 

  56. M. Tarasevich, Ion beam erosion of rough glass surfaces. Appl. Opt. 9, 173–176 (1970

    Google Scholar 

  57. A.F. Perveyev, V.V. IL’in, A.V. Mikhaylov, Ion polishing of Glass. Sov. J. Opt. Technol. 39, 622–624 (1972)

    Google Scholar 

  58. F. Frost, B. Ziberi, A. Schindler, B. Rauschenbach, Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 91, 551–559 (2008)

    Article  CAS  Google Scholar 

  59. D.J. Barber, F.C. Frank, M. Moss, J.-W. Steeds, I.S.T. Tsong, Prediction of ion bombarded surface topographies using Frank’s kinematic theory of crystal dissolution. J. Mater Sci. 8, 1030–1040 (1973)

    Article  CAS  Google Scholar 

  60. R. Smith, M.A. Tagg, J.M. Walls, Deterministic models of ion erosion, reflection and redeposition. Vacuum 34, 175–180 (1984)

    Article  CAS  Google Scholar 

  61. G. Carter, J.S. Colligon, M.J. Nobes, Analytical modelling of sputter induced surface morphology. Rad. Eff. 31, 65–87 (1977)

    Article  Google Scholar 

  62. R.M. Bradley, J.M.E. Harper, Theory of ripple topography induced by ion bombardment.  J. Vac. Sci. Technol. A 6, 2390–2396 (1988)

    Article  CAS  Google Scholar 

  63. G. Carter, M.J. Nobes, I.V. Katardjiev, The production of repetitive surface features by oblique incidence ion bombardment. Phil. Mag. B 68, 231–236 (1993)

    Article  CAS  Google Scholar 

  64. E. Chason, T.M. Mayer, B.K. Kellerman, D.T. McIlroy, A.J. Howard, Roughening instability and evolution of the Ge(001) surface during lon sputtering. Phys. Rev. Lett. 72, 3040–3043 (1994)

    Article  CAS  Google Scholar 

  65. R. Cuerno, A.-L. Barabási, Dynamic scaling of ion–sputtered surfaces. Phys. Rev. 74, 4746–4749 (1995)

    CAS  Google Scholar 

  66. R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion-sputtering: dynamical evolution from ripple morphology to rough morphology. Phys. Rev. Lett. 75, 4464–4467 (1995)

    Article  CAS  Google Scholar 

  67. C. Herring, Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301–303 (1950)

    Article  CAS  Google Scholar 

  68. W.M. Tong, R.S. Williams, Kinetics of surface growth: Phenomenology, scaling, and mechanisms of smoothing and roughening. Ann. Rev. Phys. Chem. 45, 401–438 (1994)

    Article  CAS  Google Scholar 

  69. D.G. Stearns, Stochastic model for thin film growth and erosion. Appl. Phys. Lett. 62, 1745–1747 (1993)

    Article  CAS  Google Scholar 

  70. W.W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28, 333–339 (1957). W.W. Mullins, Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959)

    Google Scholar 

  71. A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  72. S.E. Orchard, On surface levelling in viscous liquids and gels. Appl. Sci. Res., Section A. 11, 451–464 (1963)

    Google Scholar 

  73. M.A. Makeev, A.-L. Barabási, Ion-induced effective surface diffusion in ion sputtering. Appl. Phys. Lett. 71, 2800–2802 (1997)

    Article  CAS  Google Scholar 

  74. G. Carter, V. Vishnyakov, Roughening and ripple instabilities on ion-bombarded Si. Phys. Rev. B 54, 17647–17653 (1996)

    Article  CAS  Google Scholar 

  75. W. Liao, Y. Dai, X. Xie, L. Zhou, Microscopic morphology evolution during ion beam smoothing of Zerodur surfaces. Opt. Express 22, 377–386 (2014)

    Article  Google Scholar 

  76. W. Liao, Y. Dai, X. Xie, L. Zhou, Deterministic ion beam material adding technology for high-precision optical surfaces. Appl. Optics 52, 1302–1309 (2013)

    Article  Google Scholar 

  77. S. Vauth, S.G. Mayr, Relevance of surface viscous flow, surface diffusion, and ballistic effects in keV ion smoothing of amorphous surfaces. Phys. Rev. B 75, 224107 (2007)

    Google Scholar 

  78. F. Frost, R. Fechner, B. Ziberi, J. Völlner, D. Flamm, A Schindler, Large area smoothing of surfaces by ion bombardment: fundamentals and applications. J. Phys.: Condens. Matter. 21, 224026 (2009)

    Google Scholar 

  79. E. Ziegler, L. Peverini, N. Vaxelaire, A. Cordon-Rodriguez, A. Rommeveaux, I.V. Kozhevnikov, J. Susini, Evolution of surface roughness in silicon X-ray mirrors exposed to a low-energy ion beam. Nucl. Instr. Meth. in Phys. Res. A 616, 188–192 (2010)

    Article  CAS  Google Scholar 

  80. A.J.R. van den Boogaard, E. Louis, E. Zoethout, S. Müllender, F. Bijkerk, Surface morphology of Kr+-polished amorphous Si layers. J. Vac. Sci Technol. A 28, 552–558 (2010)

    Article  Google Scholar 

  81. K. Morijiri, H. Endo, K. Morikaawa, S.A. Pahlovy, I. Miyamoto, 0.5 keV Xe+ ion beam nano smoothing of ULE substrate after processing with 3.0–10.0 keV Xe+ ion beam, Microelectr. Eng. 88, 2694–2696 (2011)

    Google Scholar 

  82. H. Endo, T. Inaba, S.A. Pahlovy, I. Miyamoto, Low energy Xe+ ion beam machining of ULE substrates for EUVL projection optics—evaluation of high-spatial frequency roughness. Microelectr. Engng. 87, 982–984 (2010)

    Article  CAS  Google Scholar 

  83. M. Xu, Y. Dai, L. Zhou, X. Peng, S. Chen, W. Liao, Evolution mechanism of surface roughness during ion beam sputtering of fused silica. Appl. Optics 57, 5566–5573 (2018)

    Google Scholar 

  84. N.I. Chkhalo, S.A. Churin, M.S. Mikhaylenko, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.V. Zorina, Ion-beam polishing of fused silica substrates for imaging soft X-ray and extreme ultraviolet optics. Appl. Optics 55, 1249–1256 (2016)

    Article  CAS  Google Scholar 

  85. N.I. Chkhalo, S.A. Churin, A.E. Pestov, N.N. Salashchenko, Yu.A. Vainer, M.V. Zorina, Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics. Opt. Express 22, 20094–20106 (2014)

    Article  CAS  Google Scholar 

  86. P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H.-J. Pohl, H. Riemann, S. Valkiers, The Avogadro constant determination via enriched silicon-28. Meas. Sci. Technol. 20, 092002 (2009)

    Google Scholar 

  87. T. Arnold, F. Pietag, Ion beam figuring machine for ultra-precision silicon spheres correction. Prec. Eng. 41, 119–125 (2015)

    Article  Google Scholar 

  88. T. Hino, T. Taguchi, Y. Yamauchi, Y. Hirohata, M. Nishikawa, Surface flatness of polycrystalline copper after argon ion etching followed by annealing. J. Vac. Sci. Technol. B 22, 2632–2634 (2004)

    Google Scholar 

  89. T. Kobayashi, Y. Nobuta, Y. Yamauchi, T. Hino, Oblique argon ion etching for copper at elevated temperature. J. Plasma Fusion Res. Series 8, 1358–1360 (2009)

    Google Scholar 

  90. L.F. Johnson, K.A. Ingersoll, Ion polishing with the aid of a planarizing film. Appl. Opt. 22, 1165–1167 (1983)

    Article  CAS  Google Scholar 

  91. L.F. Johnson, K.A. Ingersoll, D. Kahng, Planarization of patterned surfaces by ion beam erosion. Appl. Phys. Lett. 40, 636–638 (1982)

    Article  CAS  Google Scholar 

  92. N. Yamauchi, T. Yachi, T. Wada, A pattern edge profile simulation for oblique ion milling.  J. Vac. Sci. Technol. A2, 1552–1557 (1984)

    Article  CAS  Google Scholar 

  93. A.I. Stognij, N.N. Novitskii, An ion-beam apparatus for the surface planarization of oxide materials. Instr. Exp. Tech. 45, 141–151 (2002)

    Article  CAS  Google Scholar 

  94. D.F. Grogan, T. Zhao, B.G. Bovard, H.A. Macleod, Planarizing technique for ion-beam polishing of diamond films. Appl. Optics 31, 1483–1487 (1992)

    Article  CAS  Google Scholar 

  95. Y. Li, H. Takino, F. Frost, Ion beam planarization of diamond turned surfaces with various roughness profiles. Opt. Express 25, 7828–7838 (2017)

    Article  CAS  Google Scholar 

  96. F. Frost, H. Takino, R. Fechner, A. Schindler, N. Ohi, K. Nomura, Smoothing of diamond-turned copper surfaces using ion beams with aid of planarizing film Jap. J. Appl. Phys. 46, 6071–6073 (2007)

    Article  CAS  Google Scholar 

  97. M. Ulitschka, J. Bauer, F. Frost, T. Arnold, Ion beam planarization of optical aluminum surfaces. J. Astron. Telesc. Instrum. Syst. 6, 014001 (2020)

    Google Scholar 

  98. F. Frost, R. Fechner, D. Flamm, B. Zberi, W. Frank, A. Schindler, Ion beam assisted smoothing of optical surfaces. Appl. Phys. A 78, 651–654 (2004)

    Article  CAS  Google Scholar 

  99. P. Oelhafen, J.L. Freeouf, G.D. Pettit, J.M. Woodall, Elevated temperature low energy ion cleaning of GaAs. J. Vac. Sci. Technol. B 1, 787–790 (1983)

    Article  CAS  Google Scholar 

  100. U. von Gemmingen, R. Sizmann, Charge states of slow hydrogen ions reflected at single crystal surfaces. Surf. Sci. 114, 445–458 (1982). K.J. Snowden, D.J. O`Conner, R.J. MacDonald, Observation of skipping motion in small-angle ion-surface scattering. Phys. Rev. Lett. 61, 1760–176 (1988)

    Google Scholar 

  101. M. Holzwarth, M. Wissing, D.S. Simeonova, S. Tzanev, K.J. Snowdon, O.I. Yordanov, Preparation of atomically smooth surfaces via sputtering under glancing incidence conditions. Surf. Sci. 331–333, 1093–1098 (1995)

    Article  Google Scholar 

  102. J.G.C. Labanda, S.A. Barnett, L. Hultman, Sputter cleaning and smoothening of GaAs(001) using glancing-angle ion bombardment. Appl. Phys. Lett. 66, 3114–3116 (1995) and Effects of glancing-angle ion bombardment on GaAs(001). J. Vac. Sci. Technol. B 13, 2260–2268 (1995)

    Google Scholar 

  103. B. Koslowski, S. Strobel, P. Ziemann, Ion polishing of a diamond (100) surface artificially roughened on the nanoscale. Diamond Rel. Mater. 9, 1159–1163 (2000)

    Article  CAS  Google Scholar 

  104. J.G.C. Labanda, S.A. Barnett, L. Hultman, Damage-free cleaning of Si (001) using glancing-angle ion bombardment. J. Vac. Sci. Technol. B 16, 1885–1890 (1998)

    Article  CAS  Google Scholar 

  105. M. Wißing, M. Holtzwarth, D.S. Simeonova, K.J. Snowdon, An apparatus for glancing incidence ion beam polishing and characterization of surfaces to angstrom-scale root-mean square roughness. Rev. Sci. Instr. 67, 4314–4320 (1996)

    Article  Google Scholar 

  106. M. Wißing, M. Batzill, K.J. Snowdon, Preparation by glancing incidence ion irradiation of CaF2 surfaces with angstrom-scale rms roughness. Nanotechnology 8, 40–45 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Rauschenbach .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauschenbach, B. (2022). Ion Beam Figuring and Smoothing. In: Low-Energy Ion Irradiation of Materials. Springer Series in Materials Science, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-97277-6_7

Download citation

Publish with us

Policies and ethics