Skip to main content

The Distributed Ledger Technology as Development Platform for Distributed Information Systems

  • Conference paper
  • First Online:
Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021) (ICIVC 2021)

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 15))

Included in the following conference series:

Abstract

Distributed Ledger Technology (DLT) has emerged as a technology enabler for developing trusted and decentralized solutions for various distributed systems worldwide. Because of their sophisticated architectural patterns, current Information System (IS) architectural frameworks are primarily designed for centralized information systems and can no longer ensure the requisite degree of availability and dependability for Distributed Information Systems (DIS). In the current study, I am the first to declare and define the term “DLT-Native”. A “DLT-Native” DIS is built on the DLT platform and uses DLT design patterns to grow internationally, support thousands of distributed nodes, and withstand operational system failures and cyber-attacks. This research creates a reference architecture for Permissioned DLTNS organizing dispersed information system components that may share information, issue and service requests, and conduct outcome-focused activities. The proposed DLTNS architecture combines prominent security, privacy, and trust domain aspects. DLT overcomes conventional DIS solutions with an inherently centralized governance approach and a lack of transparency, data traceability, and trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Steen, M., Tanenbaum, A.: Distributed systems principles and paradigms. Network 2(28) (2002)

    Google Scholar 

  2. Gong, W., Qi, L., Xu, Y.: Privacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environment. Wirel. Commun. Mobile Comput. (2018)

    Google Scholar 

  3. Zhu, X., Yang, L.T., Jiang, H., Thulasiraman, P., Di Martino, B.: Optimization in distributed information systems. J. Comput. Sci. 26, 305–306 (2018)

    Article  Google Scholar 

  4. Sahni, Y., Cao, J., Zhang, S., Yang, L.: Edge mesh: a new paradigm to enable distributed intelligence in Internet of Things. IEEE access 5, 16441–16458 (2017)

    Article  Google Scholar 

  5. Pleskach, V., Pleskach, M., Zelikovska, O.: Information security management system in distributed information systems. In: 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT), pp. 300–303 (2019)

    Google Scholar 

  6. Darwish, A., Hassanien, A.E., Elhoseny, M., Sangaiah, A.K., Muhammad, K.: The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. J. Ambient. Intell. Humaniz. Comput. 10(10), 4151–4166 (2017). https://doi.org/10.1007/s12652-017-0659-1

    Article  Google Scholar 

  7. D’souza, S., Koehler, H., Joshi, A., Vaghani, S., Rajkumar, R.: Quartz: time-as-a-service for coordination in geo-distributed systems. In: Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pp. 264–279 (2019)

    Google Scholar 

  8. Shinde, S., Tak, S., Tiwari, K., Barapatre, O., Mishra, S.K.: An introduction of distributed ledger technology in blockchain and its applications. Des. Eng. 2290–2299 (2021)

    Google Scholar 

  9. Pahlevan, M., Voulkidis, A., Velivassaki, T.H.: Secure exchange of cyber threat intelligence using TAXII and distributed ledger technologies-application for electrical power and energy system. In: The 16th International Conference on Availability, Reliability and Security, pp. 1–8 (2021)

    Google Scholar 

  10. Leiponen, A., Thomas, L.D., Wang, Q.: The dApp economy: a new platform for distributed innovation? Innovation 1–19 (2021)

    Google Scholar 

  11. Li, J., Kassem, M.: Applications of distributed ledger technology (DLT) and blockchain-enabled smart contracts in construction. Autom. Constr. 132, 103955 (2021)

    Article  Google Scholar 

  12. Johnson, M., Jones, M., Shervey, M., Dudley, J.T., Zimmerman, N.: Building a secure biomedical data sharing decentralized app (DApp): tutorial. J. Med. Internet Res. 21(10), e13601 (2019)

    Article  Google Scholar 

  13. Hamilton, M.: Blockchain distributed ledger technology: an introduction and focus on smart contracts. J. Corp. Account. Finance 31(2), 7–12 (2020)

    Article  Google Scholar 

  14. Olnes, S., Ubacht, J., Janssen, M.: Blockchain in government: benefits and implications of distributed ledger technology for information sharing. Gov. Inf. Q. 34(3), 355–364 (2017)

    Article  Google Scholar 

  15. Riley, L.J., Kotsialou, G., Dhillon, A., Mahmoodi, T., McBurney, P.J., Pearce, R.: Deploying a shareholder rights management system onto a distributed ledger. In: International Conference on Autonomous Agents and International Systems (AAMAS) (2019)

    Google Scholar 

  16. Burke, J.J.: Distributed ledger technology. In: Financial Services in the Twenty-First Century, pp. 131–154. Palgrave Macmillan, Cham (2021)

    Google Scholar 

  17. Chen, J., Chen, X., He, K., Du, R., Chen, W., Xiang, Y.: DELIA: distributed efficient log integrity audit based on hierarchal multi-party state channel. IEEE Trans. Dependable Secure Comput. (2021)

    Google Scholar 

  18. Wang, Z., Liffman, D.Y., Karunamoorthy, D., Abebe, E.: Distributed ledger technology for document and workflow management in trade and logistics. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1895–1898 (2018)

    Google Scholar 

  19. Polge, J., Robert, J., Le Traon, Y.: Permissioned DLT frameworks in the industry: a comparison. ICT Express (2020)

    Google Scholar 

  20. Birman, K.: Reliable Distributed Systems. Springer, New York (2005). https://doi.org/10.1007/0-387-27601-7

    Book  MATH  Google Scholar 

  21. Crompton, C.J., Ropar, D., Evans-Williams, C.V., Flynn, E.G., Fletcher-Watson, S.: Autistic peer-to-peer information transfer is highly effective. Autism 24(7), 1704–1712 (2020)

    Article  Google Scholar 

  22. Chasin, F., von Hoffen, M., Cramer, M., Matzner, M.: Peer-to-peer sharing and collaborative consumption platforms: a taxonomy and a reproducible analysis. IseB 16(2), 293–325 (2017). https://doi.org/10.1007/s10257-017-0357-8

    Article  Google Scholar 

  23. Saghiri, A.M., Meybodi, M.R.: An adaptive super-peer selection algorithm considering peers capacity utilizing asynchronous dynamic cellular learning automata. Appl. Intell. 48(2), 271–299 (2017). https://doi.org/10.1007/s10489-017-0946-8

    Article  Google Scholar 

  24. Wang, J., Gao, Y., Liu, W., Sangaiah, A.K., Kim, H.J.: An intelligent data gathering schema with data fusion supported for mobile sink in wireless sensor networks. Int. J. Distrib. Sensor Netw. 15(3), 1–9 (2019)

    Google Scholar 

  25. Skrzypczak, J., Schintke, F., Schütt, T.: Linearizable state machine replication of state-based CRDTs without logs. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pp. 455–457 (2019)

    Google Scholar 

  26. Howard, H., Mortier, R.: Paxos vs Raft: have we reached consensus on distributed consensus? In: Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data, pp. 1–9 (2020)

    Google Scholar 

  27. Chakrabarti, C.: iCredit: a credit based incentive scheme to combat double spending in post-disaster peer-to-peer opportunistic communication over delay tolerant network. Wireless Pers. Commun. 121(3), 2407–2440 (2021). https://doi.org/10.1007/s11277-021-08829-x

    Article  Google Scholar 

  28. Hoepman, J.-H.: Distributed double spending prevention. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols. LNCS, vol. 5964, pp. 152–165. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17773-6_19

    Chapter  Google Scholar 

  29. Campêlo, R.A., Casanova, M.A., Guedes, D.O., Laender, A.H.F.: A brief survey on replica consistency in cloud environments. J. Internet Serv. Appl. 11(1), 1–13 (2020). https://doi.org/10.1186/s13174-020-0122-y

    Article  Google Scholar 

  30. Brewer, A.: CAP twelve years later: how the “rules” have changed. IEEE Computer 45(2), 23–29 (2012)

    Article  Google Scholar 

  31. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed Programming. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15260-3

    Book  MATH  Google Scholar 

  32. Lun, Y.Z., D’Innocenzo, A., Smarra, F., Malavolta, I., Di Benedetto, M.D.: State of the art of cyber-physical systems security: an automatic control perspective. J. Syst. Softw. 149, 174–216 (2019)

    Article  Google Scholar 

  33. Messié, V., Fromentoux, G., Labidurie, N., Radier, B., Vaton, S., Amigo, I.: BALAdIN: truthfulness in collaborative access networks with distributed ledgers. Ann. Telecommun. 77, 1–13 (2021). https://doi.org/10.1007/s12243-021-00855-x

    Article  Google Scholar 

  34. Garcia-Font, V.: Conceptual technological framework for smart cities to move towards decentralized and user-centric architectures using DLT. Smart Cities 4(2), 728–745 (2021)

    Article  Google Scholar 

  35. Vukolić, M.: Rethinking permissioned blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pp. 3–7 (2017)

    Google Scholar 

  36. Berger, C., Reiser, H.P.: Scaling byzantine consensus: a broad analysis. In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, pp. 13–18 (2018)

    Google Scholar 

  37. Buterin, V.: A next-generation smart contract and decentralized application platform. White Pap. 3(37), 1–36 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzhak Aviv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aviv, I. (2022). The Distributed Ledger Technology as Development Platform for Distributed Information Systems. In: Sharma, H., Vyas, V.K., Pandey, R.K., Prasad, M. (eds) Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021). ICIVC 2021. Proceedings in Adaptation, Learning and Optimization, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-97196-0_28

Download citation

Publish with us

Policies and ethics