Skip to main content

A MVCC Approach to Parallelizing Interoperability of Consortium Blockchain

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13148))

  • 1544 Accesses

Abstract

Driven in part of the rapid growth of consortium blockchain applications, blockchain interoperability becomes extremely essential to exchange transactional data among decentralized applications. To ensure the data integrity of transactions, the state-of-the-art studies of the blockchain interoperability apply data locks, which however severely decrease system efficiency. To boost interoperability performance, this paper proposes a novel approach based on multi-version concurrency control to parallelize interoperable transactions, which aims high transaction processing throughput while ensuring data integrity. The experimental evaluation with the Smallbank benchmark shows that the proposed method achieves up to 4x performance increase (in terms of processed transactions per second, TPS) compared with the existing methods, and moreover, it decreases the average latency with 58%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2021). https://bitcoin.org/bitcoin.pdf

  2. (2021). https://github.com/ethereum/wiki/wiki/White-Paper

  3. Dean, J., Ghemawat, S.: (2021). https://github.com/google/leveldb/

  4. Apache CouchDB (2021). https://couchdb.apache.org/

  5. Oracle Timeline (2021). http://oracle.com.edgesuite.net/timeline/oracle/

  6. Buterin, V.: Chain interoperability. R3 Research Paper (2016)

    Google Scholar 

  7. Stonebraker, M., Rowe, L.A.: The design of POSTGRES. SIGMOD (1986)

    Google Scholar 

  8. Zakhary, V., Agrawal, D., El Abbadi, A.: Atomic commitment across blockchains. Proc. VLDB Endowment 13(9)

    Google Scholar 

  9. He, Y., Zhang, C., Wu, B., et al.: A cross-chain trusted reputation scheme for a shared charging platform based on blockchain. IEEE Internet Things J. (2021)

    Google Scholar 

  10. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference (2018)

    Google Scholar 

  11. Warnat-Herresthal, S., et al.: Swarm learning for decentralized and confidential clinical machine learning. Nature 594(7862), 265–270 (2021)

    Article  Google Scholar 

  12. Muzammal, M., Qu, Q., Nasrulin, B.: Renovating blockchain with distributed databases: an open source system. Future Gener. Comput. Syst. 90, 105–117 (2019)

    Article  Google Scholar 

  13. Thakkar, P., Senthil Nathan, N.: Performance benchmarking & optimizing hyperledger fabric blockchain platform (2018)

    Google Scholar 

  14. Qu, Q., Nurgaliev, I., Muzammal, M., et al.: On spatio-temporal blockchain query processing. Future Gener. Comput. Syst. 98, 208–218 (2019)

    Article  Google Scholar 

  15. Sharma, A., Schuhknecht, F.M., Agrawal, D., et al.: Blurring the lines between blockchains and database systems: the case of hyperledger fabric. In: SIGMOD, pp. 105–122 (2019)

    Google Scholar 

  16. Ruan, P., Loghin, D., Ta, Q.T., et al.: A transactional perspective on execute-order-validate blockchains. In: SIGMOD, pp. 543–557 (2020)

    Google Scholar 

  17. Nurgaliev, I., Muzammal, M., Qu, Q.: Enabling blockchain for efficient spatio-temporal query processing. In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.) WISE 2018. LNCS, vol. 11233, pp. 36–51. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02922-7_3

    Chapter  Google Scholar 

  18. Saberi, S., et al.: Blockchain technology and its relationships to sustainable supply chain management (2018)

    Google Scholar 

  19. Chacko, J.A., Mayer, R., Jacobsen, H.A.: Why do my blockchain transactions fail? A study of hyperledger fabric. In: SIGMOD, pp. 221–234 (2021)

    Google Scholar 

  20. Zhang, L., et al.: The challenges and countermeasures of blockchain in finance and economics. Syst. Res. Behav. Sci. 37(4), 691–698 (2020)

    Article  Google Scholar 

  21. Batubara, F.R., Ubacht, J., Janssen, M.: Challenges of blockchain technology adoption for e-government: a systematic literature review (2018)

    Google Scholar 

  22. Thomas, S., Schwartz, E.: A protocol for interledger payments (2015). https://interledger.org/interledger.pdf

  23. Kwon, J., Buchman, E.: A network of distributed ledgers. Cosmos 1–41 (2018)

    Google Scholar 

  24. Polkadot, W.G.: Vision for a heterogeneous multi-chain framework. https://github.com/polkadot-io/polkadotpaper/raw/master/PolkaDotPaper.pdf

  25. Herlihy, M.: Atomic cross-chain swaps. arXiv e-prints arXiv: 1801.09515 (2018)

  26. Herlihy, M., Liskov, B., Shrira, L.: Cross-chain deals and adversarial commerce. VLDB J. 1–19 (2021). https://doi.org/10.1007/s00778-021-00686-1

  27. Reed, D.P.: Naming and synchronization in a decentralized computer system. Massachusetts Institute of Technology (1978)

    Google Scholar 

  28. Larson, P.Å., Blanas, S., Diaconu, C., et al.: High-performance concurrency control mechanisms for main-memory databases. Proc. VLDB Endowment 5(4) (2011)

    Google Scholar 

  29. Qu, Q., et al.: Graph-based knowledge representation model and pattern retrieval. In: 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 5. IEEE (2008)

    Google Scholar 

  30. Wang, T., Kimura, H.: Mostly-optimistic concurrency control for highly contended dynamic workloads on a thousand cores. Proc. VLDB Endowment 10(2), 49–60 (2016)

    Article  Google Scholar 

  31. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

    Article  Google Scholar 

  32. Cahill, M.J.: Serializable isolation for snapshot databases (2009)

    Google Scholar 

  33. Yu, X., Bezerra, G., Pavlo, A., et al.: Staring into the Abyss: an evaluation of concurrency control with one thousand cores. Proc. VLDB Endowment 8(3) (2014)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Key Research and Development Project of China (Grant No. 2019YFB2102500), National Natural Science Foundation of China (No. 61902385), Shenzhen Key Basic Research Project (JCYJ20200109115422828), Huawei Cloud Research Project (YBN2020085125) and National Archives Technology Project (2020-X-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, W., Qu, Q., Ning, L., Fan, J., Jiang, Q. (2022). A MVCC Approach to Parallelizing Interoperability of Consortium Blockchain. In: Shen, H., et al. Parallel and Distributed Computing, Applications and Technologies. PDCAT 2021. Lecture Notes in Computer Science(), vol 13148. Springer, Cham. https://doi.org/10.1007/978-3-030-96772-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96772-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96771-0

  • Online ISBN: 978-3-030-96772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics