Skip to main content

Enabling Blockchain for Efficient Spatio-Temporal Query Processing

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2018 (WISE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11233))

Included in the following conference series:

Abstract

Recent interest in blockchain technology has spurred on a host of new applications in a variety of domains including spatio-temporal data management. The reliability and immutability of blockchain in addition to the decentralized trustless data processing offers promising solutions for modern enterprise systems. However, current blockchain proposals do not support spatio-temporal data processing. Further, a block-based sequential access data structure in the blockchain restricts efficient query processing. Therefore, a blockchain system is desirable that not only supports spatio-temporal data management but also provides efficient query processing. In this work, we propose efficient query processing for spatio-temporal blockchain data. We consider a spatio-temporal blockchain that records both time and location attributes for the transactions. The data storage and integrity is maintained by the introduction of a cryptographically signed tree data structure, a variant of Merkle KD-tree, which also supports fast spatial queries. For the temporal attribute, we consider Bitcoin like near uniform block generation and process temporal queries by a block-DAG data structure without the introduction of temporal indexes. For current position verification, we use Merkle-Patricia-Trie. We also propose a random graph model to generate a block-DAG topology for an abstract peer-to-peer network. A comprehensive evaluation demonstrates the applicability and the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ILDAR9/spatiotemporal_blockdag.

References

  1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

    Google Scholar 

  2. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

    Google Scholar 

  3. Nastrulin, B., Muzammal, M., Qu, Q.: ChainMOB: mobility analytics on blockchain. In: 19th IEEE International Conference on Mobile Data Management, MDM 2018, Aalborg, Denmark, IEEE Computer Society, pp. 556–557 (2018)

    Google Scholar 

  4. Fox, A.D., Eichelberger, C.N., Hughes, J.N., Lyon, S.: Spatio-temporal indexing in non-relational distributed databases. In: Proceedings of the 2013 IEEE International Conference on Big Data, Santa Clara, CA, USA, pp. 291–299 (2013)

    Google Scholar 

  5. Muzammal, M., Qu, Q., Nasrulin, B.: Renovating blockchain with distributed databases: an open source system. Futur. Gener. Comput. Syst. 90, 105–117 (2019)

    Article  Google Scholar 

  6. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Yormark, B., (ed.) SIGMOD 1984, pp. 47–57. ACM Press (1984)

    Google Scholar 

  7. Xu, X.: RT-Tree: an improved R-Tree index structure for spatiotemporal databases. In: Proceedings of the 4th International Symposium on Spatial Data Handling, 1999 (1990)

    Google Scholar 

  8. Theodoridis, Y., et al.: Spatio-temporal indexing for large multimedia applications. In: Proceedings of the IEEE ICMCS, pp. 441–448 (1996)

    Google Scholar 

  9. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  Google Scholar 

  10. Mahapatra, R.P., Chakraborty, P.S.: Comparative analysis of nearest neighbor query processing techniques. Procedia Comput. Sci. 57, 1289–1298 (2015)

    Article  Google Scholar 

  11. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

    Article  Google Scholar 

  12. Li, F., et al.: Proof-infused streams: enabling authentication of sliding window queries on streams. In: Proceedings of the 33rd VLDB, pp. 147–158 (2007)

    Google Scholar 

  13. Mouratidis, K., et al.: Partially materialized digest scheme: an efficient verification method for outsourced databases. VLDB J. 18(1), 363–381 (2009)

    Article  Google Scholar 

  14. Hu, L., Ku, W., Bakiras, S., Shahabi, C.: Spatial query integrity with voronoi neighbors. IEEE Trans. Knowl. Data Eng. 25(4), 863–876 (2013)

    Article  Google Scholar 

  15. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids: dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 162–194. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_6

    Chapter  Google Scholar 

  16. Martel, C.U., et al.: A general model for authenticated data structures. Algorithmica 39(1), 21–41 (2004)

    Article  MathSciNet  Google Scholar 

  17. Becker, G.: Merkle signature schemes, merkle trees and their cryptanalysis. Ruhr-University Bochum, Technical report (2008)

    Google Scholar 

  18. Xu, J., Wei, L., Zhang, Y., Wang, A., Zhou, F., Gao, C.: Dynamic fully homomorphic encryption-based merkle tree for lightweight streaming authenticated data structures. J. Netw. Comput. Appl. 107, 113–124 (2018)

    Article  Google Scholar 

  19. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 528–547. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_33

    Chapter  Google Scholar 

  20. Mackey, G.E.: Efficient nearest neighbor searches in n-able tm. Technical report, Sandia National Laboratories (2010)

    Google Scholar 

Download references

Acknowledgments

The work was partially supported by the CAS Pioneer Hundred Talents Program, China [grant number Y84402, 2017], and CAS President’s International Fellowship Initiative, China [grant number 2018VTB0005, 2018].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nurgaliev, I., Muzammal, M., Qu, Q. (2018). Enabling Blockchain for Efficient Spatio-Temporal Query Processing. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11233. Springer, Cham. https://doi.org/10.1007/978-3-030-02922-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02922-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02921-0

  • Online ISBN: 978-3-030-02922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics