Skip to main content

Crop Residues: A Potential Bioenergy Resource

  • Conference paper
  • First Online:
Advances in Chemical, Bio and Environmental Engineering (CHEMBIOEN 2021)

Abstract

Most of the population in India relies on agriculture and livestock for their livelihood as the country is bestowed by the nature with a variety of geographical regions vacillating from high mountains to wetlands, myriads rivers to plains, thus making most land fertile and suitable for a variety of food crops. The crop residues like rice straw, leaves, roots, bagasse, etc. that remain in fields after harvesting and processing are proving to be a major concern as these residues are frequently burnt by the farmers in the open fields causing environmental pollution leading to serious health problems. On the other hand, the share of bioenergy in power generation is significantly low as compared to the other available resources in the total energy mix of the country. The biomass can provide reliable and consistent power supply to the end-user in comparison with solar and wind energy resources, therefore, preferred as a renewable energy resource over other resources. Due to dependency on the season, the solar and wind energy resources fluctuate over short and large time frames. Thus, provides unreliable and inconsistent supply to end-user however biomass seems to be a feasible alternative to fossil fuels. So, the solar, wind, and biomass due to their different characteristics provide an opportunity for hybrid utilization of these resources to compensate for their individual drawbacks. Hybridization of these resources helps to utilize the biomass efficiently and provides electricity to end-users reliably and consistently. Hence, biomass-based hybrid power plants are tremendously promising energy systems in near future. Biogas production through anaerobic digestion from such crop residues can offer great potential for replacement of the fossil fuel for our energy requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anukam A, Mohammadi A, Nqvi M, Granström K (2019) A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency. Process 7(8). https://doi.org/10.3390/pr7080504

  • Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15:4295

    Article  CAS  Google Scholar 

  • Ayeni AO, Adeeyo OA, Oresegun OM, Oladimeji TE (2015) Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. Am J Eng Res 4(4):14–19

    Google Scholar 

  • Azapagic A, Stichnothe H (2011) Lifecycle sustainability assessment of biofuels. In: Luque R, Campelo J, Clarks J (eds) Handbook of biofuels production-processes and technologies. Woodhead Publishing, Cambridge

    Google Scholar 

  • Badshah M, Lam DM, Liu J, Mattiasson B (2012) Use of automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments. Biores Technol 114:262–269

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2010) Progress in biodiesel processing. Appl Energy 87(6):1815–1835

    Article  CAS  Google Scholar 

  • Bauer A, Leonhart BC, Bosch P, Amon B, Friedl A, Amom T (2010) Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol Environ 12:153–161

    Article  CAS  Google Scholar 

  • Bisht AS, Thakur N (2019) Small scale biomass gasification plants for electricity generation in India: resources, installation, technical aspects, sustainability criteria & policy. Renew Energy Focus 28:112–126

    Article  Google Scholar 

  • Bellarby J, Foereid B, Hastings AFSJ, Smith P (2008) Cool farming: climate impacts of agriculture and mitigation potential. Greenpeace Int 44. https://www.eprints.lancs.ac.uk/68831/1/11111/pdf

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Subramanian Ramakrishanan S (2011) Chemical and physiochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. https://doi.org/10.4061/2011/787532

  • Cardoen D, Joshi P, Sarma P, Pant D (2015a) Agriculture biomass in India: Part 1 estimation and characterization. Resour Conserv Recycl 102:39–48

    Article  Google Scholar 

  • Cardoen D, Joshi P, Diels L, Sarma P, Pant D (2015b) Agriculture biomass in India: Part 2. Post-harvest losses, cost and environment impacts. Resour Conserv Recycl 101:143–153

    Google Scholar 

  • Castillo RT, Luengo PL, Alveraz JM (1995) Temperature effect on anaerobic of bedding manure in one phase system at different inoculums concentration. Agric Ecosyst Environ 54:55–66

    Article  Google Scholar 

  • Central Electricity Authority (CEA), Government of India, Installed generation capacity in India. http://www.cea.nic.in

  • Chandra R, Takeuchi H, Hasegawa T (2012) Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy 94:129–140

    Article  CAS  Google Scholar 

  • Dahman Y, Syed K, Begum S, Roy P, Mohtaseb B (2019) Biofuels: their characteristics and analysis. Biomass, biopolymer-based materials, and bioenergy. Elsevier Ltd.

    Google Scholar 

  • Dadi AP, Schall CA, Varanasi S (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(4):904–910

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Li XL, Iten LB, Jordan DB, Nichols NN, O’Bryan PJ, Cotta MA (2006) Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enzyme Microb Technol 39(5):1137–1144

    Article  CAS  Google Scholar 

  • Dong Y, Zheng Y, Zhang RH (2009) Alkali pretreatment of rice straw for increasing the biodegradability. American Society of Agricultural and Biological Engineers, Reno, Nevada, 095685

    Google Scholar 

  • Ficara E, Malpei F (2011) Maize mono-digestion efficiency: results from laboratory tests. Water Sci Technol 64(10):2029–2037

    Article  CAS  PubMed  Google Scholar 

  • Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Biorefin 4(4):447–458

    Article  CAS  Google Scholar 

  • Ghatak M, Mahanta P (2014) Kinetic assessment of biogas production from lignocellulosic biomasses. Int J Adv Technol 3(5):244–249

    Google Scholar 

  • Guttikunda SK, Jawahar P (2014) Atmospheric emissions and pollution from coal-fired thermal power plants in India. Atmos Environ 92:449–460

    Article  CAS  Google Scholar 

  • Jackowiak D, Bassard D, Pauss A, Ribeiro T (2011) Optimization of a microwave pretreatment of wheat straw for methane production. Biores Technol 102(12):6750–6756

    Article  CAS  Google Scholar 

  • Kaparaju P, Serrano M, Angelidaki I (2009) Effect of reactor configuration on biogas production from wheat straw hydrolysate. Biores Technol 100:6317–6632

    Article  CAS  Google Scholar 

  • Kaur M, Dhundhara S, Verma YP, Chauhan S (2020) Techno-economic analysis of photovoltaic-biomass-based microgrid system for reliable rural electrification. Int Trans Electric Energy Syst. e12347. https://doi.org/10.1002/2050-7038.12347

  • Kleinert M, Barth T (2008) Towards a lignocellulosic biorefinery: direct one step conversion of lignin to hydrogen enriched biofuel. Energy Fuels 22(2):1371–1379

    Article  CAS  Google Scholar 

  • Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing biogas production. Chem Eng Technol 34:391–399

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical pretreatment of corn stover and poplar solids resulting from leading pretreatment technologies. Biores Technol 100(17):3948–3962

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Y, Wu J (2019) Enhancement of methane production in anaerobic digestion process: a review. Appl Energy 240:120–137

    Article  CAS  Google Scholar 

  • Lianhua I, Dong I, Yongming S, Longlong M, Zhenhong Y, Xiaoying K (2010) Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. Int J Hydrogen Energy 35:7261–7266

    Article  CAS  Google Scholar 

  • Liew LN, Shi J, Li Y (2011) Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Biores Technol 102:8828–8834

    Article  CAS  Google Scholar 

  • Lohan SK, Jat HS, Yadav AK, Sidhu HS, Jat ML, Choudhary M, Peter JK, Sharma PC (2018) Burning issues of paddy residue management in north-west states of India. Renew Sustain Energy Rev 81:693–706

    Article  Google Scholar 

  • Maraseni TN, Qu J (2016) An international comparison of agricultural nitrous oxide emissions. J Clean Prod 135:1256–1266

    Article  CAS  Google Scholar 

  • Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pretreatment on the methane yield of four agricultural by-products. Biores Technol 104:708–714

    Article  CAS  Google Scholar 

  • Mshandete A, Bjornsson L, Kivaisi AK, Rubindamayugi MST, Mattiasson B (2016) Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 31(14):2385–2392

    Article  CAS  Google Scholar 

  • Nguyen TAD, Kim KR, Han JS, Cho HY, Kim JW, Park SM, Park JC, Sim JS (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Biores Technol 101(19):7432–7438. https://doi.org/10.1016/j.biortech.2010.04.053

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2010) Production of liquid biofuels from resources. Prog Energy Combust Sci 37(1):52–68

    Article  CAS  Google Scholar 

  • Ohman M, Boman C, Hedman H, Eklund R (2006) Residential combustion performance of Pelletized hydrolysis residue from lignocellulosic ethanol production. Energy Fuels 20(3):1298–1304

    Article  CAS  Google Scholar 

  • Panagiotou G, Olsson L (2006) Effect of compounds released during pretreatment of wheat straw on Microbial Growth and Enzymatic hydrolysis rate. Biotechnol Bioeng 96(2):250–258

    Article  CAS  Google Scholar 

  • Pohl M, Mumme J, Heeg K, Nettmann E (2012) Thermo and mesophilic anaerobic digestion of wheat straw by upflow anaerobic solid-state process. Biores Technol 124:321–327

    Article  CAS  Google Scholar 

  • Purwandari FA, Sanjaya AP, Millati R, Cahyanto MN, Horváth IS, Niklasson C (2013) Pretreatment of oil palm empty fruit bunch (OPEFB) by N-methylmorpholine-N-oxide (NMMO) for biogas production: structural changes and digestion improvement. Bioresour Technol 128:461–466

    Google Scholar 

  • Ravindra K, Singh T, Mor S (2018) Emissions of air pollutants from primary crop residue burning in India and their mitigation strategy for cleaner emissions. J Cleaner Prod. https://doi.org/10.1016/j.clepro.2018.10.031

  • Samayam IP, Schall CA (2010) Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Biores Technol 101(10):3561–3566

    Article  CAS  Google Scholar 

  • Sambo AS, Garba B, Danshehu BG (1995) Effect of some operating parameters on biogas production rate. Renew Energy 6(3):343–344

    Article  CAS  Google Scholar 

  • Sarkis RB, Zare V (2018) Proposal and analysis of two novel integrated configurations for hybrid solar-biomass power generation systems: thermodynamic and economic evaluation. Energy Conserv Manage 160:411–425

    Article  Google Scholar 

  • Singh J (2016) A roadmap for production of sustainable, consistent and reliable electric power from agriculture biomass. Energy Policy 92:246–254

    Article  Google Scholar 

  • Singh A, Baredar P (2016) Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system. Energy Rep 2:254–260

    Article  Google Scholar 

  • Sreenath HK, Koegel RG, Moldes AB, Jeffries TW, Straub RJ (1999) Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment. Process Biochem 35:33–41

    Article  CAS  Google Scholar 

  • Srinivas T, Reddy BV (2014) Hybrid solar-biomass power plant without energy storage. Case Stud Therm Eng 2:75–81

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic waste to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takacs E, Wojnarovits L, Foldvary C, Hargittai P, Bosra J, Sajo I (2000) Effect of combined gamma-radiation and alkali treatment on cotton-cellulose. Radiat Phys Chem 57(3–6):399–403

    Article  CAS  Google Scholar 

  • Teghammar A, Karimi K, Horvath IS, Taherzadeh MJ (2011) Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass Bioenergy 36:116–120

    Article  CAS  Google Scholar 

  • Thambi S, Bhatacharya A, Fricko O (2018) India’s energy and emission outlook: results from India energy model. Energy, Climate Change and Overseas Engagement Division. NITI Aayog, India

    Google Scholar 

  • Velmurugan R, Muthukumar K (2012) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Biores Technol 112:293–299. https://doi.org/10.1016/j.biortech.2012.01.168

    Article  CAS  Google Scholar 

  • Wang J, Yue ZB, Chen TH, Peng SC, Yu HQ, Chen HZ (2010) Anaerobic digestibility and fiber composition of bulrush in response to steam explosion. Biores Technol 101:661–673

    Google Scholar 

  • Wilkie A, Colleran E (1986) Pilot scale digestion of pig slurry supernatant using an upflow anaerobic filter. Environ Technol Lett 7:65–76

    Article  CAS  Google Scholar 

  • Woods J, Hall DO (1994) Bioenergy conversion technologies. Bioenergy for development—Technical and environmental dimensions. FAO, Environment and energy paper, Rome

    Google Scholar 

  • Yadvika S, Sreekrishnan TR, Sangeeta K, Vineet R (2003) Enhancement of biogas production from solid substrates using different techniques: a review. Biores Technol 95:1–10

    Article  CAS  Google Scholar 

  • Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manage 33:2653–2658

    Article  CAS  Google Scholar 

  • Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530

    Article  CAS  Google Scholar 

  • Zhao Y, Sun F, Yu J, Cai Y, Luo X, Cui Z, Hu Y, Wang X (2018) Co-digestion of oat straw and cow manure during anaerobic digestion: Simulative and inhibitory effects on fermentation. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.08.040

  • Zheng M, Li L, Li X, Xiong J, Mei T, Chen G (2010) The effect of alkaline pretreatment parameters on anaerobic bio gasification of corn stover. Energy Source Part A 32:918

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maninder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, M., Dhundhara, S. (2022). Crop Residues: A Potential Bioenergy Resource. In: Ratan, J.K., Sahu, D., Pandhare, N.N., Bhavanam, A. (eds) Advances in Chemical, Bio and Environmental Engineering. CHEMBIOEN 2021. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-96554-9_24

Download citation

Publish with us

Policies and ethics