Skip to main content

Changes in \(SmO_2\) Levels During the March on a Treadmill and Rest in Healthy Subjects

  • Conference paper
  • First Online:
Information Technology and Systems (ICITS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 414))

Included in the following conference series:

  • 928 Accesses

Abstract

Assessment of the current physical performance of an athlete relies on monitoring several parameters in response to a stimulus. One of them is a fast march on a treadmill with regulated speed and incline. Because traditional parameters describing physical performance (heart rate, blood lactate concentration, \(VO_{2max}\)) do not provide specific information about muscle activity, an alternative approach is needed. This applies to muscle oxygen saturation (\(SmO_2\)), which can be acquired in a noninvasive way based on near-infrared spectroscopy (NIRS). The changes of \(SmO_2\) are evaluated as fitting the linear regression to three phases of the experiment: the march with the velocity of 4 mph (6.44 km/h), the march with the highest walking velocity, and the rest. The coefficients of linear regression indicate the decrease of \(SmO_2\) level during the phases 1 and 2 and the increase of \(SmO_2\) level during the rest. Observed values of linear regression coefficients of \(SmO_2\) during the analyzed phases indicate the usefulness of NIRS in evaluating muscle fatigue, which may find its use in monitoring the interval training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, S.J., Wilkerson, D.P., DiMenna, F.J., Jones, A.M.: Influence of repeated sprint training on pulmonary o2 uptake and muscle deoxygenation kinetics in humans. J. Appl. Phys. 106(6), 1875–1887 (2009). https://doi.org/10.1152/japplphysiol.00144.2009

    Article  Google Scholar 

  2. Baker, W.B., et al.: Effects of exercise training on calf muscle oxygen extraction and blood flow in patients with peripheral artery disease. J. Appl. Phys. 123(6), 1599–1609 (2017). https://doi.org/10.1152/japplphysiol.00585.2017

    Article  Google Scholar 

  3. Belardinelli, R., Barstow, T.J., Porszasz, J., Wasserman, K.: Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy. Eur. J. Appl. Physiol. 70(6), 487–492 (1995). https://doi.org/10.1007/bf00634377

    Article  Google Scholar 

  4. Bentley, D.J., Newell, J., Bishop, D.: Incremental exercise test design and analysis. Sports Med. 37(7), 575–586 (2007). https://doi.org/10.2165/00007256-200737070-00002

    Article  Google Scholar 

  5. Bhambhani, Y.N., Buckley, S.M., Susaki, T.: Detection of ventilatory threshold using near infrared spectroscopy in men and women. Med. Sci. Sports Exerc. 29(3), 402–409 (1997). https://doi.org/10.1097/00005768-199703000-00017

    Article  Google Scholar 

  6. Boone, J., Vandekerckhove, K., Coomans, I., Prieur, F., Bourgois, J.G.: An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur. J. Appl. Phys. 2085–2102 (2016). https://doi.org/10.1007/s00421-016-3468-x

  7. Chance, B., Dait, M.T., Zhang, C., Hamaoka, T., Hagerman, F.: Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am. J. Phys. Cell Phys. 262(3), C766–C775 (1992). https://doi.org/10.1152/ajpcell.1992.262.3.c766

    Article  Google Scholar 

  8. De Blasi, R.A., Fantini, S., Franceschini, M.A., Ferrari, M., Gratton, E.: Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer. Med. Biol. Eng. Comput. 33(2), 228–230 (1995). https://doi.org/10.1007/bf02523048

    Article  Google Scholar 

  9. Esaki, K., et al.: Association between regional quadriceps oxygenation and blood oxygen saturation during normoxic one-legged dynamic knee extension. Eur. J. Appl. Phys. 95(4), 361–370 (2005). https://doi.org/10.1007/s00421-005-0008-5

    Article  Google Scholar 

  10. Esteve-Lanao, J., Foster, C., Seiler, S., Lucia, A.: Impact of training intensity distribution on performance in endurance athletes. J. Strength Conditioning Res. 21(3), 943 (2007). https://doi.org/10.1519/r-19725.1

    Article  Google Scholar 

  11. Farzam, P., Starkweather, Z., Franceschini, M.A.: Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle. Phys. Rep. 6(7), e13,664 (2018). https://doi.org/10.14814/phy2.13664

  12. Ferrari, M., Mottola, L., Quaresima, V.: Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 29(4), 463–487 (2004). https://doi.org/10.1139/h04-031

    Article  Google Scholar 

  13. Ferrari, M., Muthalib, M., Quaresima, V.: The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369(1955), 4577–4590 (2011). https://doi.org/10.1098/rsta.2011.0230

    Article  Google Scholar 

  14. Goodwin, M.L., Harris, J.E., Hernández, A., Gladden, L.B.: Blood lactate measurements and analysis during exercise: a guide for clinicians. J. Diab. Sci. Technol. 1(4), 558–569 (2007). https://doi.org/10.1177/193229680700100414

    Article  Google Scholar 

  15. Grassi, B., et al.: Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J. Appl. Phys. 95(1), 149–158 (2003). https://doi.org/10.1152/japplphysiol.00695.2002

    Article  Google Scholar 

  16. Grassi, B., Quaresima, V., Marconi, C., Ferrari, M., Cerretelli, P.: Blood lactate accumulation and muscle deoxygenation during incremental exercise. J. Appl. Phys. 87(1), 348–355 (1999). https://doi.org/10.1152/jappl.1999.87.1.348

    Article  Google Scholar 

  17. Hamaoka, T., et al.: Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J. Appl. Phys. 81(3), 1410–1417 (1996). https://doi.org/10.1152/jappl.1996.81.3.1410

    Article  Google Scholar 

  18. Hamaoka, T., McCully, K.K.: Review of early development of near-infrared spectroscopy and recent advancement of studies on muscle oxygenation and oxidative metabolism. J. Phys. Sci. 69(6), 799–811 (2019). https://doi.org/10.1007/s12576-019-00697-2

    Article  Google Scholar 

  19. Hamaoka, T., McCully, K.K., Niwayama, M., Chance, B.: The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369(1955), 4591–4604 (2011). https://doi.org/10.1098/rsta.2011.0298

    Article  Google Scholar 

  20. Huang, N.E., et al.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454(1971), pp. 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

  21. Ihsan, M., Abbiss, C., Lipski, M., Buchheit, M., Watson, G.: Muscle oxygenation and blood volume reliability during continuous and intermittent running. Int. J. Sports Med. 34(07), 637–645 (2013). https://doi.org/10.1055/s-0032-1331771

    Article  Google Scholar 

  22. Jobsis, F.: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977). https://doi.org/10.1126/science.929199

    Article  Google Scholar 

  23. Komiyama, T., Onozuka, A., Miyata, T., Shigematsu, H.: Oxygen saturation measurement of calf muscle during exercise in intermittent claudication. Eur. J. Vasc. Endovasc. Surg. 23(5), 388–392 (2002). https://doi.org/10.1053/ejvs.2002.1645

    Article  Google Scholar 

  24. Nielsen, H.B., Boushel, R., Madsen, P., Secher, N.H.: Cerebral desaturation during exercise reversed by o2 supplementation. Am. J. Phys. Heart Circulatory Phys. 277(3), H1045–H1052 (1999). https://doi.org/10.1152/ajpheart.1999.277.3.h1045

    Article  Google Scholar 

  25. Nonin Medical Inc: Model 8004CA single-patient use, non-sterile, disposable regional oximetry sensor with EQUANOX™ technology. Datasheet (2019). https://www.nonin.com/wp-content/uploads/Operators-Manual-8004CA.pdf

  26. Perrey, S., Ferrari, M.: Muscle oximetry in sports science: a systematic review. Sports Med. 48(3), 597–616 (2017). https://doi.org/10.1007/s40279-017-0820-1

    Article  Google Scholar 

  27. Racinais, S., Buchheit, M., Girard, O.: Breakpoints in ventilation, cerebral and muscle oxygenation, and muscle activity during an incremental cycling exercise. Front. Phys. 5 (2014). https://doi.org/10.3389/fphys.2014.00142

  28. Rato, R., Ortigueira, M., Batista, A.: On the HHT, its problems, and some solutions. Mech. Syst. Sig. Process. 22(6), 1374–1394 (2008). https://doi.org/10.1016/j.ymssp.2007.11.028. Special Issue: Mechatronics

  29. Rilling, G., Flandrin, P., Goncalves, P.: On empirical mode decomposition and its algorithms. In: IEEE-EURASIP Workshop Nonlinear Signal Image Processing, vol. 3, pp. 8–11 (2003)

    Google Scholar 

  30. Seiler, K.S., Kjerland, G.O.: Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand. J. Med. Sci. Sports 16(1), 49–56 (2006). https://doi.org/10.1111/j.1600-0838.2004.00418.x

  31. Shibuya, K., Tachi, M.: Oxygenation in the motor cortex during exhaustive pinching exercise. Respir. Phys. Neurobiol. 153(3), 261–266 (2006). https://doi.org/10.1016/j.resp.2005.11.008

    Article  Google Scholar 

  32. Tew, G.A., Ruddock, A.D., Saxton, J.M.: Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise. Eur. J. Appl. Phys. 110(5), 1083–1089 (2010). https://doi.org/10.1007/s00421-010-1596-2

    Article  Google Scholar 

  33. van der Zwaard, S., et al.: Oxygenation threshold derived from near-infrared spectroscopy: Reliability and its relationship with the first ventilatory threshold. PLoS ONE 11(9), e0162,914 (2016). https://doi.org/10.1371/journal.pone.0162914

  34. Wang, G., Chen, X.Y., Qiao, F.L., Wu, Z., Huang, N.E.: On intrinsic mode function. Adv. Adapt. Data Anal. 02(03), 277–293 (2010). https://doi.org/10.1142/S1793536910000549

    Article  MathSciNet  Google Scholar 

  35. Wang, L., Yoshikawa, T., Hara, T., Nakao, H., Suzuki, T., Fujimoto, S.: Which common NIRS variable reflects muscle estimated lactate threshold most closely? Appl. Phys. Nutr. Metab. 31(5), 612–620 (2006). https://doi.org/10.1139/h06-069

    Article  Google Scholar 

  36. Willwacher, S., et al.: A new method for measuring treadmill belt velocity fluctuations: effects of treadmill type, body mass and locomotion speed. Sci. Rep. 11(1) (2021). https://doi.org/10.1038/s41598-021-81951-9

  37. Yodh, A., Chance, B.: Spectroscopy and imaging with diffusing light. Phys. Today 48(3), 34–40 (1995). https://doi.org/10.1063/1.881445

    Article  Google Scholar 

Download references

Acknowledgment

The project was supported by the National Centre for Research and Development of Poland under the Smart Growth Operational Programme, grant number POIR.01.01.01-00-0653/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szymon Sieciński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sieciński, S., Kostka, P.S., Tkacz, E.J. (2022). Changes in \(SmO_2\) Levels During the March on a Treadmill and Rest in Healthy Subjects. In: Rocha, Á., Ferrás, C., Méndez Porras, A., Jimenez Delgado, E. (eds) Information Technology and Systems. ICITS 2022. Lecture Notes in Networks and Systems, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-030-96293-7_10

Download citation

Publish with us

Policies and ethics