Skip to main content

Genitourinary System

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine

Abstract

Scintigraphic imaging in the genitourinary (GN) system is an important diagnostic modality that is considered the procedure of choice or a useful complementary imaging modality in the management of urological or nephrologic conditions in infants, children, and adults. Although the radiopharmaceuticals used in the GN system remain the same for decades, the scintigraphic procedures still retain value in the patient wok up. Therefore, understanding the clinical indication and assigning the appropriate scan is paramount for procedure optimization and best answering the clinical question by the nuclear physician. This chapter discusses the different available radiopharmaceutical uses, and the principles of renal scintigraphy procedures, and their interpretation. Furthermore, this section covers various clinical indications in the GN system such as renovascular hypertension, renal outflow obstruction, pyelonephritis, renal scarring, renal transplant complications, vesicoureteral reflux, and acute scrotal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Field M, Harris D, Pollock C (2010) 5-Glomerular filtration and acute kidney injury. In: Field M, Pollock C, Harris D (eds) The renal system, 2nd edn. Elsevier, pp 57–67

    Chapter  Google Scholar 

  2. Chang A, Laszik ZG (2020) The kidney. In: Robbins pathologic basis of disease, 10th edn. WB Saunders Company

    Google Scholar 

  3. Chung AA, Millner PR (2020) Accessory renal artery stenosis and secondary hypertension. Case Rep Nephrol 2020:8879165. https://doi.org/10.1155/2020/8879165

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eshima D, Fritzberg AR, Taylor A Jr (1990) 99mTc renal tubular function agents: current status. Semin Nucl Med 20(1):28–40. https://doi.org/10.1016/s0001-2998(05)80174-6

    Article  CAS  PubMed  Google Scholar 

  5. Blaufox MD (1991) Procedures of choice in renal nuclear medicine. J Nucl Med 32(6):1301–1309

    CAS  PubMed  Google Scholar 

  6. Rutland MD (1985) A comprehensive analysis of renal DTPA studies. I. Theory and normal values. Nucl Med Commun 6(1):11–20. https://doi.org/10.1097/00006231-198501000-00003

    Article  CAS  PubMed  Google Scholar 

  7. Jafri RA, Britton KE, Nimmon CC, Solanki K, Al-Nahhas A, Bomanji J, Fettich J, Hawkins LA (1988) Technetium-99m MAG3, a comparison with iodine-123 and iodine-131 orthoiodohippurate, in patients with renal disorders. J Nucl Med 29(2):147–158

    CAS  PubMed  Google Scholar 

  8. Stabin M, Taylor A Jr, Eshima D, Wooter W (1992) Radiation dosimetry for technetium-99m-MAG3, technetium-99m-DTPA, and iodine-131-OIH based on human biodistribution studies. J Nucl Med 33(1):33–40

    CAS  PubMed  Google Scholar 

  9. Raber SA, Schraml FV, Silverman ED (1997) Renal cortical retention of Tc-99m MAG3 in hypertension. Clin Nucl Med 22(3):190–192. https://doi.org/10.1097/00003072-199703000-00016

    Article  CAS  PubMed  Google Scholar 

  10. Levey CS, Schraml FV, Abreu SH, Silverman ED (1999) False-positive result of a captopril-enhanced radionuclide renogram in a child secondary to dehydration. Clin Nucl Med 24(1):6–8. https://doi.org/10.1097/00003072-199901000-00002

    Article  CAS  PubMed  Google Scholar 

  11. Taylor A Jr, Nally JV (1995) Clinical applications of renal scintigraphy. Am J Roentgenol 164(1):31–41. https://doi.org/10.2214/ajr.164.1.7998566

    Article  Google Scholar 

  12. El-Maghraby TA, de Fijter JW, van Eck-Smit BL, Zwinderman AH, El-Haddad SI, Pauwels EK (1998) Renographic indices for evaluation of changes in graft function. Eur J Nucl Med 25(11):1575–1586. https://doi.org/10.1007/s002590050338

    Article  CAS  PubMed  Google Scholar 

  13. Olin JW, Piedmonte MR, Young JR, DeAnna S, Grubb M, Childs MB (1995) The utility of duplex ultrasound scanning of the renal arteries for diagnosing significant renal artery stenosis. Ann Intern Med 122(11):833–838. https://doi.org/10.7326/0003-4819-122-11-199506010-00004

    Article  CAS  PubMed  Google Scholar 

  14. Chrysochou C, Kalra PA (2009) Epidemiology and natural history of atherosclerotic renovascular disease. Prog Cardiovasc Dis 52(3):184–195. https://doi.org/10.1016/j.pcad.2009.09.001

    Article  PubMed  Google Scholar 

  15. Noilhan C, Barigou M, Bieler L, Amar J, Chamontin B, Bouhanick B (2016) Causes of secondary hypertension in the young population: a monocentric study. Ann Cardiol d'angeiol 65(3):159–164. https://doi.org/10.1016/j.ancard.2016.04.016

    Article  CAS  Google Scholar 

  16. Safian RD, Textor SC (2001) Renal-artery stenosis. N Engl J Med 344(6):431–442. https://doi.org/10.1056/NEJM200102083440607

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Maldonado M (1991) Pathophysiology of renovascular hypertension. Hypertension 17(5):707–719. https://doi.org/10.1161/01.hyp.17.5.707

    Article  CAS  PubMed  Google Scholar 

  18. Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM (2014) Classical renin-angiotensin system in kidney physiology. Compr Physiol 4(3):1201–1228. https://doi.org/10.1002/cphy.c130040

    Article  PubMed  PubMed Central  Google Scholar 

  19. Herrmann SM, Textor SC (2019) Renovascular hypertension. Endocrinol Metab Clin N Am 48(4):765–778. https://doi.org/10.1016/j.ecl.2019.08.007

    Article  Google Scholar 

  20. Fine EJ, Sarkar S (1989) Differential diagnosis and management of renovascular hypertension through nuclear medicine techniques. Semin Nucl Med 19(2):101–115. https://doi.org/10.1016/s0001-2998(89)80005-4

    Article  CAS  PubMed  Google Scholar 

  21. Hricik DE, Browning PJ, Kopelman R, Goorno WE, Madias NE, Dzau VJ (1983) Captopril-induced functional renal insufficiency in patients with bilateral renal-artery stenoses or renal-artery stenosis in a solitary kidney. N Engl J Med 308(7):373–376. https://doi.org/10.1056/NEJM198302173080706

    Article  CAS  PubMed  Google Scholar 

  22. Blaufox MD, De Palma D, Taylor A, Szabo Z, Prigent A, Samal M, Li Y, Santos A, Testanera G, Tulchinsky M (2018) The SNMMI and EANM practice guideline for renal scintigraphy in adults. Eur J Nucl Med Mol Imaging 45(12):2218–2228. https://doi.org/10.1007/s00259-018-4129-6

    Article  PubMed  Google Scholar 

  23. Picciotto G, Sargiotto A, Petrarulo M, Rabbia C, De Filippi PG, Roccatello D (2003) Reliability of captopril renography in patients under chronic therapy with angiotensin II (AT1) receptor antagonists. J Nucl Med 44(10):1574–1581

    CAS  PubMed  Google Scholar 

  24. Fommei E, Ghione S, Hilson AJ, Mezzasalma L, Oei HY, Piepsz A, Volterrani D (1993) Captopril radionuclide test in renovascular hypertension: a European multicentre study. European multicentre study group. Eur J Nucl Med 20(7):617–623. https://doi.org/10.1007/BF00176558

    Article  CAS  PubMed  Google Scholar 

  25. Taylor A, Nally J, Aurell M, Blaufox D, Dondi M, Dubovsky E, Fine E, Fommei E, Geyskes G, Granerus G, Kahn D, Morton K, Oei HY, Russell C, Sfakianakis G, Fletcher J (1996) Consensus report on ACE inhibitor renography for detecting renovascular hypertension. Radionuclides in Nephrourology Group. Consensus group on ACEI renography. J Nucl Med 37(11):1876–1882

    CAS  PubMed  Google Scholar 

  26. Prigent A, Cosgriff P, Gates GF, Granerus G, Fine EJ, Itoh K, Peters M, Piepsz A, Rehling M, Rutland M, Taylor A Jr (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: international consensus committee from the scientific committee of radionuclides in nephrourology. Semin Nucl Med 29(2):146–159. https://doi.org/10.1016/s0001-2998(99)80005-1

    Article  CAS  PubMed  Google Scholar 

  27. Mustafa S, Elgazzar AH (2013) Effect of the NSAID diclofenac on 99mTc-MAG3 and 99mTc-DTPA renography. J Nucl Med 54(5):801–806. https://doi.org/10.2967/jnumed.112.109595

    Article  CAS  PubMed  Google Scholar 

  28. Ludwig V, Martin WH, Delbeke D (2003) Calcium channel blockers: a potential cause of false-positive captopril renography. Clin Nucl Med 28(2):108–112. https://doi.org/10.1097/01.RLU.0000048679.45832.F3

    Article  PubMed  Google Scholar 

  29. Sarkar SD (1992) Diuretic renography: concepts and controversies. Urol Radiol 14(2):79–84. https://doi.org/10.1007/BF02926908

    Article  CAS  PubMed  Google Scholar 

  30. Fine EJ (1999) Interventions in renal scintirenography. Semin Nucl Med 29(2):128–145. https://doi.org/10.1016/s0001-2998(99)80004-x

    Article  CAS  PubMed  Google Scholar 

  31. Pohl HG, Rushton HG, Park JS, Belman AB, Majd M (2001) Early diuresis renogram findings predict success following pyeloplasty. J Urol 165(6 Pt 2):2311–2315. https://doi.org/10.1097/00005392-200106001-00024

    Article  CAS  PubMed  Google Scholar 

  32. Heyman S (1994) Radionuclide studies of the genitourinary tract. In: Miller J, Gelfand M (eds) Pediatric nuclear imaging. Saunders, Philadelphia, pp 195–211

    Google Scholar 

  33. Taylor AT, Brandon DC, de Palma D, Blaufox MD, Durand E, Erbas B, Grant SF, Hilson A, Morsing A (2018) SNMMI procedure standard/EANM practice guideline for diuretic renal scintigraphy in adults with suspected upper urinary tract obstruction 1.0. Semin Nucl Med 48(4):377–390. https://doi.org/10.1053/j.semnuclmed.2018.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ring P, Huether SE (2017) Alteration of renal and urinary tract function in children. In: McCance KL, Huether SE (eds) Pathophysiology, 8th edn. Mosby, Philadelphia, pp 1278–1295

    Google Scholar 

  35. Strand WR (1999) Urinary infection in children: pathogenesis, bacterial virulence, and host resistance. In: Bauer SB, Gonzales E (eds) Pediatric urology practice. Lippincott Williams & Wilkins, Philadelphia, pp 433–461

    Google Scholar 

  36. Kaefer M, Diamond D (1987) Vesicoureteral reflux. In: Retik A, Cukier J (eds) Pediatric urology. Williams and Wilkins, Baltimore, pp 463–486

    Google Scholar 

  37. Solari V, Owen D, Puri P (2005) Association of transforming growth factor-beta1 gene polymorphism with reflux nephropathy. J Urol 174(4 Pt 2):1609–1611. https://doi.org/10.1097/01.ju.0000179385.64585.dc

    Article  CAS  PubMed  Google Scholar 

  38. Kanematsu A, Yamamoto S, Yoshino K, Ishitoya S, Terai A, Sugita Y, Ogawa O, Tanikaze S (2005) Renal scarring is associated with nonsecretion of blood type antigen in children with primary vesicoureteral reflux. J Urol 174(4 Pt 2):1594–1597. https://doi.org/10.1097/01.ju.0000176598.60310.90

    Article  PubMed  Google Scholar 

  39. Shaikh N, Osio VA, Wessel CB, Jeong JH (2020) Prevalence of asymptomatic bacteriuria in children: a meta-analysis. J Pediatr 217:110–117.e4. https://doi.org/10.1016/j.jpeds.2019.10.019

    Article  CAS  PubMed  Google Scholar 

  40. Mahyar A, Ayazi P, Mavadati S, Oveisi S, Habibi M, Esmaeily S (2014) Are clinical, laboratory, and imaging markers suitable predictors of vesicoureteral reflux in children with their first febrile urinary tract infection? Korean J Urol 55(8):536–541. https://doi.org/10.4111/kju.2014.55.8.536

    Article  PubMed  PubMed Central  Google Scholar 

  41. Subcommittee on urinary tract infection (2016) Reaffirmation of AAP clinical practice guideline: the diagnosis and management of the initial urinary tract infection in febrile infants and young children 2-24 months of age. Pediatrics 138(6):e20163026. https://doi.org/10.1542/peds.2016-3026

    Article  Google Scholar 

  42. National Institute for Health and Clinical Excellence (NICE) (2018) Clinical guideline 54—Urinary tract infection in under 16s: diagnosis and management. Clinical guideline Published: 22 August 2007. www.nice.org.uk/guidance/cg54

  43. Pokrajac D, Sefic-Pasic I, Begic A (2018) Vesicoureteral reflux and renal scarring in infants after the first febrile urinary tract infection. Med Archiv 72(4):272–275. https://doi.org/10.5455/medarh.2018.72.272-275

    Article  Google Scholar 

  44. Roupakias S, Sinopidis X, Tsikopoulos G, Spyridakis I, Karatza A, Varvarigou A (2017) Dimercaptosuccinic acid scan challenges in childhood urinary tract infection, vesicoureteral reflux and renal scarring investigation and management. Minerva Urol Nefrol 69(2):144–152. https://doi.org/10.23736/S0393-2249.16.02509-1. Epub 2016 Jun 29. PMID: 27355216

    Article  PubMed  Google Scholar 

  45. Breinbjerg A, Jørgensen CS, Frøkiær J et al (2021) Risk factors for kidney scarring and vesicoureteral reflux in 421 children after their first acute pyelonephritis, and appraisal of international guidelines. Pediatr Nephrol 36(9):2777–2787

    Article  Google Scholar 

  46. Ramos CD, Onusic DM, Brunetto SQ, Amorim BJ, Souza TF, Saad S, Lima M (2019) Technetium-99m-dimercaptosuccinic acid renal scintigraphy and single photon emission computed tomography/computed tomography in patients with sickle cell disease. Nucl Med Commun 40(11):1158–1165. https://doi.org/10.1097/MNM.0000000000001086

    Article  CAS  PubMed  Google Scholar 

  47. Vasco M, Benincasa G, Fiorito C, Faenza M, De Rosa P, Maiello C, Santangelo M, Vennarecci G, Napoli C (2021) Clinical epigenetics and acute/chronic rejection in solid organ transplantation: an update. Transplant Rev 35(2):100609. https://doi.org/10.1016/j.trre.2021.100609

    Article  Google Scholar 

  48. Hruba P, Madill-Thomsen K, Mackova M, Klema J, Maluskova J, Voska L, Parikova A, Slatinska J, Halloran PF, Viklicky O (2020) Molecular patterns of isolated tubulitis differ from tubulitis with interstitial inflammation in early indication biopsies of kidney allografts. Sci Rep 10(1):22220

    Article  CAS  Google Scholar 

  49. Callemeyn J, Ameye H, Lerut E, Senev A, Coemans M, Van Loon E, Sprangers B, Van Sandt V, Rabeyrin M, Dubois V, Thaunat O, Kuypers D, Emonds MP, Naesens M (2020) Revisiting the changes in the Banff classification for antibody-mediated rejection after kidney transplantation. Am J Transplant 21(7):2413–2423. https://doi.org/10.1111/ajt.16474

    Article  CAS  Google Scholar 

  50. Randhawa PS, Tsamandas AC, Magnone M, Jordan M, Shapiro R, Starzl TE, Demetris AJ (1996) Microvascular changes in renal allografts associated with FK506 (Tacrolimus) therapy. Am J Surg Pathol 20(3):306–312. https://doi.org/10.1097/00000478-199603000-00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Asher J, Vasdev N, Wyrley-Birch H, Wilson C, Soomro N, Rix D, Jaques B, Manas D, Torpey N, Talbot D (2014) A prospective randomised paired trial of sirolimus versus tacrolimus as primary immunosuppression following non-heart beating donor kidney transplantation. Curr Urol 7(4):174–180. https://doi.org/10.1159/000365671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Munib S, Ahmed T, Ahmed R, Najam-Ud-Din (2021) Renal allograft biopsy findings in live-related renal transplant recipients. J College Physic Surg 31(2):197–201. https://doi.org/10.29271/jcpsp.2021.02.197

    Article  Google Scholar 

  53. Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Möbius TE (1985) International system of radiographic grading of vesicoureteric reflux. International reflux study in children. Pediatr Radiol 15(2):105–109. https://doi.org/10.1007/BF02388714

    Article  CAS  PubMed  Google Scholar 

  54. Williams G, Fletcher JT, Alexander SI, Craig JC (2008) Vesicoureteral reflux. J Am Soc Nephrol 19(5):847–862. https://doi.org/10.1681/ASN.2007020245

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez MM (2004) Developmental renal pathology: its past, present, and future. Fetal Pediatr Pathol 23(4):211–229. https://doi.org/10.1080/15227950490923453

    Article  PubMed  Google Scholar 

  56. Jana S, Blaufox MD (2006) Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med 36(1):51–72. https://doi.org/10.1053/j.semnuclmed.2005.09.001

    Article  PubMed  Google Scholar 

  57. Kopac M, Kenig A, Kljucevsek D, Kenda RB (2005) Indirect voiding urosonography for detecting vesicoureteral reflux in children. Pediatr Nephrol 20(9):1285–1287. https://doi.org/10.1007/s00467-005-1961-2

    Article  PubMed  Google Scholar 

  58. Charbonneau SG, Tackett LD, Gray EH, Caesar RE, Caldamone AA (2005) Is long-term sonographic followup necessary after uncomplicated ureteral reimplantation in children? J Urol 174(4 Pt 1):1429–1432. https://doi.org/10.1097/01.ju.0000173128.73742.bc

    Article  PubMed  Google Scholar 

  59. Giel DW, Noe HN, Williams MA (2005) Ultrasound screening of asymptomatic siblings of children with vesicoureteral reflux: a long-term followup study. J Urol 174(4 Pt 2):1602–1605. https://doi.org/10.1097/01.ju.0000176596.87624.a3

    Article  PubMed  Google Scholar 

  60. Penido Silva JM, Oliveira EA, Diniz JS, Bouzada MC, Vergara RM, Souza BC (2006) Clinical course of prenatally detected primary vesicoureteral reflux. Pediatr Nephrol 21(1):86–91. https://doi.org/10.1007/s00467-005-2058-7

    Article  PubMed  Google Scholar 

  61. Muschat M (1932) The pathological anatomy of testicular torsion: explanation of its mechanism. Surg Gynaecol Obstet 54:758–763

    Google Scholar 

  62. Allan WR, Brown RB (1966) Torsion of the testis: a review of 58 cases. Br Med J 1(5500):1396–1397. https://doi.org/10.1136/bmj.1.5500.1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scorer CG, Farrington GH (1971) Congenital deformities of testis and epididymis, 1st edn. Butterworth, London

    Google Scholar 

  64. Corriere JN Jr (1972) Horizontal lie of the testicle: a diagnostic sign in torsion of the testis. J Urol 107(4):616–617. https://doi.org/10.1016/s0022-5347(17)61093-0

    Article  PubMed  Google Scholar 

  65. Skoglund RW, McRoberts JW, Ragde H (1970) Torsion of testicular appendages: presentation of 43 new cases and a collective review. J Urol 104(4):598–600. https://doi.org/10.1016/s0022-5347(17)61790-7

    Article  CAS  PubMed  Google Scholar 

  66. Rencken RK, du Plessis DJ, de Haas LS (1990) Venous infarction of the testis—a cause of non-response to conservative therapy in epididymo-orchitis. A case report. S Afr Med J 78(6):337–338

    CAS  PubMed  Google Scholar 

  67. Kogan SJ (2002) Swellings of the intrascrotal contents. In: Gillenwalter JY (ed) Adult and pediatric urology, 4th edn. Lippincott Williams & Wilkins, Philadilphia

    Google Scholar 

  68. Frush DP, Babcock DS, Lewis AG, Paltiel HJ, Rupich R, Bove KE, Sheldon CA (1995) Comparison of color Doppler sonography and radionuclide imaging in different degrees of torsion in rabbit testes. Acad Radiol 2(11):945–951. https://doi.org/10.1016/s1076-6332(05)80693-2

    Article  CAS  PubMed  Google Scholar 

  69. Luker GD, Siegel MJ (1994) Color Doppler sonography of the scrotum in children. Am J Roentgenol 163(3):649–655. https://doi.org/10.2214/ajr.163.3.8079863

    Article  CAS  Google Scholar 

  70. Herbener TE (1996) Ultrasound in the assessment of the acute scrotum. J Clin Ultrasound 24(8):405–421. https://doi.org/10.1002/(SICI)1097-0096(199610)24:8<405::AID-JCU2>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  71. Patriquin HB, Yazbeck S, Trinh B, Jéquier S, Burns PN, Grignon A, Filiatrault D, Garel L, Dubois J (1993) Testicular torsion in infants and children: diagnosis with Doppler sonography. Radiology 188(3):781–785. https://doi.org/10.1148/radiology.188.3.8351347

    Article  CAS  PubMed  Google Scholar 

  72. Olguner M, Akgür FM, Aktuğ T, Derebek E (2000) Bilateral asynchronous perinatal testicular torsion: a case report. J Pediatr Surg 35(9):1348–1349. https://doi.org/10.1053/jpsu.2000.9330

    Article  CAS  PubMed  Google Scholar 

  73. Pogorelić Z, Mustapić K, Jukić M, Todorić J, Mrklić I, Mešštrović J, Jurić I, Furlan D (2016) Management of acute scrotum in children: a 25-year single center experience on 558 pediatric patients. Can J Urol 23(6):8594–8601

    PubMed  Google Scholar 

  74. Laher A, Ragavan S, Mehta P, Adam A (2020) Testicular torsion in the emergency room: a review of detection and management strategies. Open Access Emerg Med 12:237–246. https://doi.org/10.2147/OAEM.S236767

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hörmann M, Balassy C, Philipp MO, Pumberger W (2004) Imaging of the scrotum in children. Eur Radiol 14(6):974–983. https://doi.org/10.1007/s00330-004-2248-x

    Article  PubMed  Google Scholar 

  76. Shin J, Jeon GW (2020) Comparison of diagnostic and treatment guidelines for undescended testis. Clin Exp Pediatr 63(11):415–421. https://doi.org/10.3345/cep.2019.01438

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lavallee ME, Cash J (2005) Testicular torsion: evaluation and management. Curr Sports Med Rep 4(2):102–104. https://doi.org/10.1097/01.csmr.0000306081.13064.a2

    Article  PubMed  Google Scholar 

  78. Ring N, Staatz G (2017) Bildgebende Diagnostik beim akuten Skrotum [Diagnostic imaging in cases of acute scrotum]. Aktuelle Urol 48(5):443–451. https://doi.org/10.1055/s-0043-100497

    Article  PubMed  Google Scholar 

  79. Saleh O, El-Sharkawi MS, Imran MB (2012) Scrotal scintigraphy in testicular torsion: an experience at a tertiary care centre. IIUM Med J Malaysia 11(1). https://doi.org/10.31436/imjm.v11i1.540

  80. Yuan Z, Luo Q, Chen L, Zhu J, Zhu R (2001) Clinical study of scrotum scintigraphy in 49 patients with acute scrotal pain: a comparison with ultrasonography. Ann Nucl Med 15(3):225–229. https://doi.org/10.1007/BF02987836

    Article  CAS  PubMed  Google Scholar 

  81. Nussbaum Blask AR, Bulas D, Shalaby-Rana E, Rushton G, Shao C, Majd M (2002) Color Doppler sonography and scintigraphy of the testis: a prospective, comparative analysis in children with acute scrotal pain. Pediatr Emerg Care 18(2):67–71. https://doi.org/10.1097/00006565-200204000-00001

    Article  PubMed  Google Scholar 

  82. Wu HC, Sun SS, Kao A, Chuang FJ, Lin CC, Lee CC (2002) Comparison of radionuclide imaging and ultrasonography in the differentiation of acute testicular torsion and inflammatory testicular disease. Clin Nucl Med 27(7):490–493. https://doi.org/10.1097/00003072-200207000-00005

    Article  PubMed  Google Scholar 

  83. Saha GB (2010) Fundamentals of nuclear pharmacy, 6th edn. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghanem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghanem, M., Elgazzar, A.H. (2022). Genitourinary System. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics