Skip to main content

Basis of Radiopharmaceutical Localization

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine
  • 607 Accesses

Abstract

Nuclear Medicine provides a physiological image unlike the other imaging techniques that provide an anatomical one. The physiological image is obtained after administering a radiopharmaceutical into the patient via injection, inhalation, oral ingestion, or implantation and time should be given for the radiopharmaceutical to circulate till it reaches the target. The main mechanism of radiopharmaceutical localizations are compartmentalized, passive diffusion, facilitated diffusion, active transport, filtration, secretion, phagocytosis, cell sequestration, capillary blockade, ion exchange, chemisorption, cellular migration, and receptor binding. Each radiopharmaceutical has a unique localization mechanism, and this chapter covers the different localization mechanisms of the clinically approved radiopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kowalsky RJ, Falen SW (2011) Radionuclide production. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. American Pharmacists Association, pp 31–46

    Google Scholar 

  2. Mausner LF, Mirzadeh S (2003) Reactor production of radionuclides. In: Welch M, Redvanly C (eds) Handbook of radiopharmaceuticals radiochemistry and applications. Wiley, pp 87–117

    Google Scholar 

  3. Ruth TJ (2003) Accelerators available for isotope production. In: Welch M, Redvanly C (eds) Handbook of radiopharmaceuticals radiochemistry and applications. Wiley, pp 71–85

    Google Scholar 

  4. Mahmood A, Jones AG (2003) Technetium radiopharmaceuticals. In: Welch M, Redvanly C (eds) Handbook of radiopharmaceuticals radiochemistry and applications. Wiley, pp 323–325

    Google Scholar 

  5. Evans EA (1981) Synthesis of radiolabelled compounds. J Radioanal Chem 64:9–32

    Article  CAS  Google Scholar 

  6. Bonfils P, Damgaard M, Stokholm KH, Nielsen SL (2012) Tc-99m-albumin can replace I-125-albumin to determine plasma volume repeatedly. Scand J Clin Lab Invest 72:447–451

    Article  CAS  PubMed  Google Scholar 

  7. Fairbanks VF, Klee GG, Wiseman GA, Hoyer JD, Tefferi A et al (1996) Measurement of blood volume and red cell mass: re-examination of 51Cr and 125I methods. Blood Cells Mol Dis 22:169–186

    Article  CAS  PubMed  Google Scholar 

  8. Berman I, Carr R, Malone E (1964) Determination of total blood volume from measurements of total red blood cell mass and plasma volume, using simultaneously injected isotopes. Nature 202:1013–1015

    Article  CAS  PubMed  Google Scholar 

  9. Hambÿe AS, Verbeke KA, Vandermeiren RP, Joosens EJ, Verbruggen AM et al (1997) Comparison of modified technetium-99m albumin and technetium-99m red blood cells for equilibrium ventriculography. J Nucl Med 38:1521–1528

    PubMed  Google Scholar 

  10. Sheakley ML, Gordon L (1984) Evaluation of hepatic hemangioma with Tc-99m labeled red blood cells. J Nucl Med Technol 17:119–121

    Google Scholar 

  11. Dong H, Zhang Z, Guo Y, Zhang H, Xu W (2017) The application of technetium-99m-red blood cell scintigraphy in the diagnosis of orbital cavernous hemangioma. Nucl Med Commun 38:744–747

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wagner HN, Lopez-Majano V, Langan JK, Joshi RC (1968) Radioactive xenon in the differential diagnosis of pulmonary embolism. Radiology 91:1168–1174

    Article  PubMed  Google Scholar 

  13. Mishkin FS, Brashear RE, Reese IC (1970) Evaluation of regional perfusion and ventilation using xenon 133 and the scintillation camera. Am J Roentgenol 108:60–70

    Article  CAS  Google Scholar 

  14. Alderson PO, Lee H, Summer WA, Motazedi A, Wagner HN (1979) Comparison of Xe-133 washout and single-breath imaging for the detection of ventilation abnormalities. J Nucl Med 20:917–922

    CAS  PubMed  Google Scholar 

  15. Barth A, Haldemann AR, Reubi JC, Rösier H, Kinser JA et al (1996) Noninvasive differentiation of meningiomas from other brain tumours using combined 111indium-octreotide/99mtechnetium-DTPA brain scintigraphy. Acta Neurochir 138:1179–1185

    Article  CAS  PubMed  Google Scholar 

  16. Inoue Y, Momose T, Machida K, Honda N, Mamiya T et al (1993) Delayed imaging of Tc-99m-DTPA-HSA SPECT in subacute cerebral infarction. Radiat Med 11:214–216

    CAS  PubMed  Google Scholar 

  17. Balon HR, Fink-Bennett DM, Brill DR, Fig LM, Freitas JE et al (1997) Procedure guideline for hepatobiliary scintigraphy. J Nucl Med 38:1654–1657

    CAS  PubMed  Google Scholar 

  18. Rantis PC, Harford FJ, Wagner RH, Henkin RE (1995) Technetium-labelled red blood cell scintigraphy: is it useful in acute lower gastrointestinal bleeding? Int J Colorect Dis 10:210–215

    Article  Google Scholar 

  19. Dam HQ, Brandon DC, Grantham VV, Hilson AJ, Howarth DM et al (2014) The SNMMI procedure standard/EANM practice guideline for gastrointestinal bleeding scintigraphy 2.0. J Nucl Med Technol 42:308–317

    Article  PubMed  Google Scholar 

  20. Jian R, Ducrot F, Piedeloup C, Mary JY, Najean Y, Bernier JJ (1985) Measurement of gastric emptying in dyspeptic patients: effect of a new gastrokinetic agent (cisapride). Gut 26:352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ertay T, Doğan AS, Ülker Ö, Durak H (2014) In vitro evaluation of Tc-99m radiopharmaceuticals for gastric emptying studies. Mol Imaging Radionucl Ther 23:21–24

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakamura K, Tukatani Y, Kubo A, Hashimoto S, Terayama Y et al (1989) The behavior of 99mTc-hexamethylpropyleneamineoxime (99mTc-HMPAO) in blood and brain. Eur J Nucl Med 15:100–107

    Article  CAS  PubMed  Google Scholar 

  23. Vanbilloen HP, Cleynhens BJ, Verbruggen AM (1998) Importance of the two ester functions for the brain retention of 99mTc-labelled ethylene dicysteine diethyl ester (99mTc-ECD). Nucl Med Biol 25:569–575

    Article  CAS  PubMed  Google Scholar 

  24. Berman DS, Kiat H, Maddahi J (1991) The new 99mTc myocardial perfusion imaging agents: 99mTc-sestamibi and 99mTc-teboroxime. Circulation 84(3 Suppl):I7–I21

    CAS  PubMed  Google Scholar 

  25. Braat SH (1991) 99mTc myocardial perfusion imaging. Curr Opin Radiol 3:810–816

    Google Scholar 

  26. Nakamura K, Sammiya T, Hashimoto J, Ishibashi R, Matsumoto K et al (1996) Comparison of cationic myocardial perfusion agents: characteristics of accumulation in cultured smooth muscle cells. Ann Nucl Med 10:375–381

    Article  CAS  PubMed  Google Scholar 

  27. Kitsiou NK, Bacharach SL, Bartlett ML, Srinivasan G, Summers RM et al (1999) 13N-ammonia myocardial blood flow and uptake: relation to functional outcome of asynergic regions after revascularization. J Am Coll Cardiol 33:678–686

    Google Scholar 

  28. Ziessman H, O’Malley J (2014) Cardiac system. In: Thrall J (ed) Nuclear medicine: the requisites. Elsevier, pp 378–423

    Google Scholar 

  29. Hoffer P (1980) Gallium: mechanisms. J Nucl Med 21:282–285

    CAS  PubMed  Google Scholar 

  30. Muranaka A, Ito Y, Hashimoto M, Namba M, Nishitani K et al (1980) Uptake and excretion of 67Ga-citrate in malignant tumors and normal cells. Eur J Nucl Med 5:31–37

    Article  CAS  PubMed  Google Scholar 

  31. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(suppl):43S–63S

    Article  CAS  PubMed  Google Scholar 

  32. Koopmans KP, Neels ON, Kema IP, Elsinga PH, Links TP et al (2009) Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol 71:199–213

    Article  PubMed  Google Scholar 

  33. Neels OC, Koopmans KP, Jager PL, Vercauteren L, van Waarde A et al (2008) Manipulation of [11C]-5-hydroxytryptophan and 6-[18F]fluoro-3,4-dihydroxy-l-phenylalanine accumulation in neuroendocrine tumor cells. Cancer Res 68:7183–7190

    Article  CAS  PubMed  Google Scholar 

  34. Masaki Y, Shimizu Y, Yoshioka T, Nishijima K, Zhao S et al (2017) FMISO accumulation in tumor is dependent on glutathione conjugation capacity in addition to hypoxic state. Ann Nucl Med 31:596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li F, Joergensen JT, Hansen AE, Kjaer A (2014) Kinetic modeling in PET imaging of hypoxia. Am J Nucl Med Mol Imaging 4:490–506

    PubMed  PubMed Central  Google Scholar 

  36. Reske SN, Grillenberger KG, Glatting G, Port M, Hildebrandt M et al (1997) Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med 38:1344–1348

    CAS  PubMed  Google Scholar 

  37. Brown RS, Wahl RL (1993) Overexpression of Glut-1 glucose transporter in human breast cancer: an immunohistochemical study. Cancer 72:2979–2985

    Article  CAS  PubMed  Google Scholar 

  38. Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL (1996) Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res 56:2468–2471

    CAS  PubMed  Google Scholar 

  39. Caraco C, Aloj L, Chen LY, Chou JY, Eckelman WC (2000) Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system. J Biol Chem 275:18489–18494

    Article  CAS  PubMed  Google Scholar 

  40. Lan JA, Chervu LR, Johansen KL, Wolkoff AW (1988) Uptake of technetium 99m hepatobiliary imaging agents by cultured rat hepatocytes. Gastroenterology 95:1625–1631

    Article  CAS  PubMed  Google Scholar 

  41. Chung JK (2002) Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 43:1188–1200

    CAS  PubMed  Google Scholar 

  42. Bizhanova A, Kopp P (2009) Minireview: the sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 150:1084–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Robbins RJ, Schlumberger MJ (2005) The evolving role of 131I for the treatment of differentiated thyroid carcinoma. J Nucl Med 46:28S–37S

    CAS  PubMed  Google Scholar 

  44. Drew H, LaFrance N, Chen J (1987) Thyroid imaging studies. J Nucl Med Technol 15:79–87

    Google Scholar 

  45. McCall D, Zimmer LJ, Katz AM (1985) Kinetics of thallium exchange in cultured rat myocardial cells. Circ Res 56:370–376

    Article  CAS  PubMed  Google Scholar 

  46. Arbab AS, Koizumi K, Toyama K, Arai T, Araki T (1997) Ion transport systems in the uptake of 99Tcm-tetrofosmin, 99mTc-MIBI and 201Tl in a tumour cell line. Nucl Med Commun 18:235–240

    Article  CAS  PubMed  Google Scholar 

  47. Askari A (2019) The sodium pump and digitalis drugs: dogmas and fallacies. Pharmacol Res Perspect 7:e00505

    Article  PubMed  PubMed Central  Google Scholar 

  48. Glynn IM, Richards DE (1982) Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport. J Physiol 330:17–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pandit-Taskar N, Modak S (2017) Norepinephrine transporter as a target for imaging and therapy. J Nucl Med 58:39S–53S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Huang R, Cheung NK, Guo H, Zanzonico PB et al (2014) Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 20:2182–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weyer K, Nielsen R, Petersen SV, Christensen EI, Rehling M et al (2013) Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med 54:159–165

    Article  CAS  PubMed  Google Scholar 

  52. Willis KW, Martinez DA, Hedley-Whyte ET, Davis MA, Judy PF et al (1977) Renal localization of 99mTc-stannous glucophetonate and 99mTc-stannous dimercaptosuccinate in the rat by frozen section autoradiography: the efficiency and resolution of technetium-99m. Radiat Res 69:475–488

    Article  CAS  PubMed  Google Scholar 

  53. Peters AM, Jones DH, Evans K, Gordon I (1988) Two routes for 99mTc-DMSA uptake into the renal cortical tubular cell. Eur J Nucl Med 14:555–561

    Article  CAS  PubMed  Google Scholar 

  54. Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M et al (2011) Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 52:822–829

    Article  CAS  PubMed  Google Scholar 

  55. Ren J, Yuan L, Wen G, Yang J (2016) The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: a meta-analysis. Acta Radiol 57:487–493

    Article  PubMed  Google Scholar 

  56. Odewole OA, Tade FI, Nieh PT, Savir-Baruch B, Jani AB et al (2016) Recurrent prostate cancer detection with anti-3-[18F]FACBC PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging 43:1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oka S, Okudaira H, Ono M, Schuster DM, Goodman MM et al (2014) Differences in transport mechanisms of trans-1-amino3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol 16:322–329

    Article  PubMed  Google Scholar 

  58. Peck M, Pollack HA, Friesen A, Muzi M, Shoner SC et al (2015) Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging 59:95–104

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ et al (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672

    Article  PubMed  Google Scholar 

  60. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  CAS  PubMed  Google Scholar 

  61. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M et al (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36:779–787

    Article  CAS  PubMed  Google Scholar 

  62. Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222:193–214

    Article  CAS  PubMed  Google Scholar 

  63. Kent C (1990) Regulation of phosphatidylcholine biosynthesis. Prog Lipid Res 29:87–105

    Article  CAS  PubMed  Google Scholar 

  64. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995

    CAS  PubMed  Google Scholar 

  65. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP et al (2001) Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42:1805–1814

    CAS  PubMed  Google Scholar 

  66. Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A et al (1996) Report of the radionuclides in nephrourology committee on renal clearance. J Nucl Med 37:1883–1890

    CAS  PubMed  Google Scholar 

  67. Eshima D, Taylor A (1992) Technetium-99m (99mTc) mercaptoacetyltriglycine: update on the new 99mTc renal tubular function agent. Semin Nucl Med 22:61–73

    Article  CAS  PubMed  Google Scholar 

  68. Bubeck B, Brandau W, Weber E, Kälble T, Parekh N et al (1990) Pharmacokinetics of technetium-99m-MAG3 in humans. J Nucl Med 31:1285–1293

    CAS  PubMed  Google Scholar 

  69. Schaap GH, Alferink TH, de Jong RB, Oe PL, Roos JC et al (1988) 99mTc-MAG3: dynamic studies in patients with renal disease. Eur J Nucl Med 14:28–31

    Google Scholar 

  70. Williams JC (1983) Pertechnetate and the stomach—a continuing controversy. J Nucl Med 24:633–636

    CAS  PubMed  Google Scholar 

  71. Chaudhuri TK (1975) Cellular site of secretion of 99mTcO4 in the stomach. A controversial point. J Nucl Med 16:1204–1205

    CAS  PubMed  Google Scholar 

  72. Higgins CB, Taketa RM, Taylor A, Halpern SE, Ashburn WL (1974) Renal uptake of 99mTc-sulfur colloid. J Nucl Med 15:564–566

    CAS  PubMed  Google Scholar 

  73. Klingensmith WC III, Ryerson TW (1973) Lung uptake of 99mTc-sulfur colloid. J Nucl Med 14:201–204

    PubMed  Google Scholar 

  74. Prakash R, Gupta RK, Narayanan RV, Chakravarty SK (1989) Technetium-99m radiocolloid scintigraphy, planar and SPECT red blood cell imaging and ultrasonography in diagnosis of hepatic hemangioma. Australas Radiol 33:237–244

    Article  CAS  PubMed  Google Scholar 

  75. Oussoren C, Velinova M, Scherphof G, van der Want J, van Rooijen N et al (1998) Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: IV. Fate of liposomes in regional lymph nodes. Biochim Biophys Acta 1370:259–272

    Article  CAS  PubMed  Google Scholar 

  76. Hung JC, Wiseman GA, Wahner HW, Mullan BP, Taggart TR et al (1995) Filtered technetium-99m-sulfur colloid evaluated for lymphoscintigraphy. J Nucl Med 36:1895–1901

    CAS  PubMed  Google Scholar 

  77. Armas RR (1985) Clinical studies with spleen-specific radiolabeled agents. Semin Nucl Med 15:260–275

    Article  CAS  PubMed  Google Scholar 

  78. Atkins HL, Eckelman WC, Hauser W, Klopper JF, Richards P (1972) Splenic sequestration of 99mTc-labeled red blood cells. J Nucl Med 13:811–814

    CAS  PubMed  Google Scholar 

  79. Levine G (1980) Tc-99m MAA: a model for administering the desired number of particles for pulmonary perfusion studies. J Nucl Med Technol 8:33–36

    Google Scholar 

  80. Bolstad DM, Valley TB, Wilson ME, Hung JC (1992) An improved technique for reducing the number of particles in a technetium-99m macroaggregated albumin injection. J Nucl Med Technol 20:220–223

    Google Scholar 

  81. Ziessman HA, Wahl RL, Juni JE, Gyves JE, Ensminger WD et al (1985) The utility of SPECT for 99mTc-MAA hepatic arterial perfusion scintigraphy. AJR Am J Roentgenol 145:747–751

    Article  CAS  PubMed  Google Scholar 

  82. Fukushi Y, Ozawa T, Wakui M, Nishiyama A (1995) Sr2+ can pass through Ca2+ entry pathway activated by Ca2+ depletion, but can be hardly taken up by the Ca2+ stores in the rat salivary acinar cells. Tohoku J Exp Med 176:83–97

    Article  CAS  PubMed  Google Scholar 

  83. Czernin J, Satyamurthy N, Schiepers C (2010) Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 51:1826–1829

    Article  CAS  PubMed  Google Scholar 

  84. Subramanian G, McAfee JG, Blair RJ, Kallfelz FA, Thomas FD (1975) Technetium-99m-methylene diphosphonate—a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755

    CAS  PubMed  Google Scholar 

  85. Sartor O, Hoskin P, Bruland ØS (2013) Targeted radio-nuclide therapy of skeletal metastases. Cancer Treat Rev 39:18–26

    Article  CAS  PubMed  Google Scholar 

  86. Roca M, de Vries EF, Jamar F, Israel O, Signore A (2010) Guidelines for the labelling of leucocytes with (111)In-oxine. Inflammation/infection taskgroup of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging 37:835–841

    Article  PubMed  PubMed Central  Google Scholar 

  87. Allan RA, Sladen GE, Bassingham SC, Lazarus SEM, Clarke I et al (1993) Comparison of simultaneous 99mTc-HMPAO and 111In oxine labelled white cell scans in the assessment of inflammatory bowel disease. Eur J Nucl Med 20:195–200

    Article  CAS  PubMed  Google Scholar 

  88. Wester HJ, Schottelius M (2019) PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med 49:302–312

    Article  PubMed  Google Scholar 

  89. Lin M, Ta RT, Kairemo K, Le DB, Ravizzini GC (2021) Prostate-Specific Membrane Antigen-Targeted Radiopharmaceuticals in Diagnosis and Therapy of Prostate Cancer: Current Status and Future Perspectives. Cancer Biother Radiopharm 36(3):237–251. https://doi.org/10.1089/cbr.2020.3603. Epub 2020 Jun 23. PMID: 32589458.

  90. Okarvi SM (2019) Recent developments of prostate-specific membrane antigen (PSMA)-specific radiopharmaceuticals for precise imaging and therapy of prostate cancer: an overview. Clin Transl Imaging 7:189–208

    Article  Google Scholar 

  91. Davies A (2007) Radioimmunotherapy for B-cell lymphoma: Y90 ibritumomab tiuxetan and I131 tositumomab. Oncogene 26:3614–3628

    Article  CAS  PubMed  Google Scholar 

  92. Jacene HA, Filice R, Kasecamp W, Wahl RL (2007) Comparison of 90Y-Ibritumomab Tiuxetan and 131I-Tositumomab in clinical practice. J Nucl Med 48:1767–1776

    Article  CAS  PubMed  Google Scholar 

  93. Leners N, Jamar F, Fiasse R, Ferrant A, Pauwels S (1996) Indium- 111-pentetreotide uptake in endocrine tumors and lymphoma. J Nucl Med 37:916–922

    CAS  PubMed  Google Scholar 

  94. Deppen SA, Blume J, Bobbey AJ, Shah C, Graham MM, Lee P, Delbeke D, Walker RC (2016) 68Ga-DOTATATE compared with 111In-DTPA-octreotide and conventional imaging for pulmonary and gastroenteropancreatic neuroendocrine tumors: a systematic review and meta-analysis. J Nucl Med 57:872–878

    Article  CAS  PubMed  Google Scholar 

  95. Yang J, Kan Y, Ge BH, Yuan L, Li C et al (2014) Diagnostic role of Gallium-68 DOTATOC and Gallium-68 DOTATATE PET in patients with neuroendocrine tumors: a meta-analysis. Acta Radiol 55:389–398

    Article  PubMed  Google Scholar 

  96. Ullrich M, Bergmann R, Peitzsch M, Zenker EF, Cartellieri M et al (2016) Multimodal somatostatin receptor theranostics using [(64)Cu]Cu−/[(177)Lu]Lu-DOTA-(Tyr(3))octreotate and AN-238 in a mouse pheochromocytoma model. Theranostics 6:650–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yeo JM, Waddell B, Khan Z, Pal S (2015) A systematic review and meta-analysis of (18)F-labeled amyloid imaging in Alzheimer’s disease. Alzheimers Dement 1:5–13

    Google Scholar 

  98. Auvity S, Tonietto M, Caillé F et al (2020) Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB. Eur J Nucl Med Mol Imaging 47:490–501

    Article  CAS  PubMed  Google Scholar 

  99. Liao GJ, Clark AS, Schubert EK, Mankoff DA (2016) J Nucl Med 57:1269–1275

    Article  CAS  PubMed  Google Scholar 

  100. Roussakis AA, Piccini P, Politis M (2013) Clinical utility of DaTscan™ (123I-Ioflupane Injection) in the diagnosis of Parkinsonian syndromes. Degen Neurol Neuromusc Dis 3:33–39

    CAS  Google Scholar 

  101. Vallabhajosula S, Killeen RP, Osborne JR (2010) Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl Med 40:220–241

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shorouk Dannoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dannoon, S. (2022). Basis of Radiopharmaceutical Localization. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics