Skip to main content

Improving the Aggregate Utility of IEEE 802.11 WLAN Using NOMA

  • Conference paper
  • First Online:
Advanced Network Technologies and Intelligent Computing (ANTIC 2021)

Abstract

The IEEE 802.11 WLAN standards are very popular since three decades due to its flexibility and operation in unlicensed frequency bands. It provides physical and MAC layer specifications. We present an analytical model with a channel access scheme to improve the aggregate utility of WLAN using non-orthogonal multiple access (NOMA). The NOMA is used at physical layer and in MAC layer distributed coordination function (DCF) is considered. With the inclusion of NOMA in WLAN, multiple transmissions are possible in a resource block. Moreover, it mitigates the contention process to enhance the performance of WLAN. With the analytical model, we show the performance of NOMA based WLAN improved compared to conventional WLAN. The analytical results are validated with simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foerster, J.R., Costa-Perez, X., Prasad, R.V.: Communications for IoT: connectivity and networking. IEEE Internet Things Mag. 3(1), 6–7 (2020)

    Article  Google Scholar 

  2. Chatzimisios, P., Boucouvalas, A.C., Vitsas, V.: IEEE 802.11 packet delay-a finite retry limit analysis. In: GLOBECOM 2003, vol. 2, pp. 950–954, December 2003

    Google Scholar 

  3. Babu, A.V., Jacob, L.: Fairness analysis of IEEE 802.11 multirate wireless LANs. IEEE Trans. Veh. Technol. 56(5), 3073–3088 (2007)

    Google Scholar 

  4. Uddin, M.F.: Throughput performance of NOMA in WLANs with a CSMA MAC protocol. Wireless Netw. 25(6), 3365–3384 (2018). https://doi.org/10.1007/s11276-018-1730-3

    Article  MathSciNet  Google Scholar 

  5. Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., Hanzo, L.: A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surveys Tuts. 20(3), 2294–2323 (2018)

    Article  Google Scholar 

  6. Islam, S.M.R., Avazov, N., Dobre, O.A., Kwak, K.s.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surveys Tuts. 19(2), 721–742 (2017)

    Google Scholar 

  7. Khorov, E., Kureev, A., Levitsky, I., Tutelian, S.: Scheduling for downlink non-orthogonal multiple access in Wi-Fi networks. In: 2018 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC), pp. 1–6 (2018)

    Google Scholar 

  8. Tian, Z., Wang, J., Wang, J., Zhang, C., Tang, Z., Wu, F.: More clients connected by NOMA in the downlink transmission of WLANs. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1968–1973 (2017)

    Google Scholar 

  9. Kheirkhah Sangdeh, P., Pirayesh, H., Yan, Q., Zeng, K., Lou, W., Zeng, H.: A practical downlink NOMA scheme for wireless LANs. IEEE Trans. Commun. 68(4), 2236–2250 (2020)

    Article  Google Scholar 

  10. Pavan, B.S., Harigovindan, V.P.: A novel channel access scheme for NOMA based IEEE 802.11 WLAN. Sādhanā 46(3), 1–6 (2021). https://doi.org/10.1007/s12046-021-01669-2

    Article  Google Scholar 

  11. Ali, M.S., Tabassum, H., Hossain, E.: Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access 4, 6325–6343 (2016)

    Google Scholar 

  12. Harigovindan, V.P., Babu, A.V., Jacob, L.: Proportional fair resource allocation in vehicle-to-infrastructure networks for drive-thru Internet applications. Comput. Commun. 40, 33–50 (2014)

    Article  Google Scholar 

  13. nsnam: ns-3 Design Documentation Wi-Fi Module (2018). https://www.nsnam.org/docs/models/html/wifi.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavan, B.S., Harigovindan, V.P. (2022). Improving the Aggregate Utility of IEEE 802.11 WLAN Using NOMA. In: Woungang, I., Dhurandher, S.K., Pattanaik, K.K., Verma, A., Verma, P. (eds) Advanced Network Technologies and Intelligent Computing. ANTIC 2021. Communications in Computer and Information Science, vol 1534. Springer, Cham. https://doi.org/10.1007/978-3-030-96040-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96040-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96039-1

  • Online ISBN: 978-3-030-96040-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics