Skip to main content
Log in

Throughput performance of NOMA in WLANs with a CSMA MAC protocol

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The existing medium access control (MAC) protocols are not able to utilize the full opportunities from power-domain non-orthogonal multiple access (NOMA) technique in wireless local area networks (WLANs). In this paper, we propose a carrier sense multiple access (CSMA) MAC protocol to increase downlink throughput by utilizing the opportunities offered by NOMA technique in downlink access of WLANs. For downlink transmission, an algorithm is developed to select an optimal user-set with appropriate power allocation from a randomly selected user-set. We then develop an analytical model to compute the uplink and downlink throughputs of a WLAN under the proposed MAC protocol by modelling the WLAN system as a discrete time Markov chain. The uplink and downlink throughputs of a WLAN under the proposed MAC protocol are determined by means of the analytical model and the accuracy of the analytical model is verified via extensive simulation. It is demonstrated that the proposed NOMA based MAC protocol improves the downlink throughput significantly compared to an orthogonal multiple access (OMA) based traditional CSMA MAC protocol without reducing the uplink throughput considerably. For a reasonable configuration, the downlink throughput gain is found to be more than 250%. We also study the throughput performance of the proposed MAC protocol for different transmit power levels, user medium access rates, data rates, path loss exponents and number of users in WLAN. We find that the throughput gain obtained by the proposed MAC protocol increases with increasing the transmit power and decreases with increasing the data rates and path loss. However, the change in the throughput gain obtained by the proposed MAC protocol is not significant for increasing the number of users and the user medium access rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In the protocol interference model, the received signal strengths of all the received signals are assumed to be equal.

References

  1. Ericsson, L. (2011). More than 50 billion connected devices. White Paper, 1–12.

  2. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.

    Article  MATH  Google Scholar 

  3. Andrews, J., Buzzi, S., Choi, W., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  4. Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  5. Adigun, O., Pirmoradian, M., & Politis, C. (2015). Cognitive radio for 5G wireless networks. Fundamentals of 5G mobile networks. Chichester: Wiley.

    Google Scholar 

  6. Rappaport, T., Sun, S., Mayzus, R., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.

    Article  Google Scholar 

  7. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the IEEE Vehicular Technology Conference.

  8. Dai, L., Wang, B., Yuan, Y., Han, S., ChihLin, I., & Wang, Z. (2015). Nonorthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  9. Wei, Z., Yuan, J., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Communications, 14(4), 17–26.

    Google Scholar 

  10. Anxin, L., Yang, L., Xiaohang, C., & Huiling, J. (2015). Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G. China Communications, 12, 28–37.

    Article  Google Scholar 

  11. Tian, Z., Wang, J., Wang, J., Zhang, C., Tang, Z., & Wu, F. (2017). More clients connected by NOMA in the downlink transmission of WLANs. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1968–1973).

  12. Shin, K.-S., & Jo, O. (2017). Joint scheduling and power allocation using non-orthogonal multiple access in directional beam-based WLAN systems. IEEE Wireless Communications Letter, 6(4), 482–485.

    Article  Google Scholar 

  13. IEEE Std. 802.11. (1997). Wireless LAN medium access control (MAC) and physical layer (PHY) specifiation. New York: IEEE.

  14. Cover, T. M. (1972). Broadcast channels. IEEE Transactions Information Theory, 18(1), 2–14.

    Article  MathSciNet  MATH  Google Scholar 

  15. Vanka, S., Srinivasa, S., Gong, Z., Vizi, P., Stamatiou, K., & Haenggi, M. (2012). Superposition coding strategies: Design and experimental evaluation. IEEE Transactions Wireless Communications, 11(7), 2628–2639.

    Article  Google Scholar 

  16. Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation. IEICE Transactions Communications, E98–B(3), 403–414.

    Article  Google Scholar 

  17. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2016). Power domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  18. Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letter, 21(12), 1501–1505.

    Article  Google Scholar 

  19. Wang, P., Xiao, J., & Ping, L. (2006). Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Vehicular Technology Magazine, 1, 4–11.

    Article  Google Scholar 

  20. Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE Journal Selected Areas Communications, 35(10), 2413–2424.

    Article  Google Scholar 

  21. Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129.

    Article  Google Scholar 

  22. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In IEEE Personal, Indoor and Mobile Radio Communications Symposium (pp. 611–615).

  23. Di, B., Bayat, S., Song, L., & Li, Y. (2015). Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory. In Proceedings of the IEEE Global Communications Conference (pp. 1–6).

  24. Xu, P., & Cumanan, K. (2017). Optimal power allocation scheme for non-orthogonal multiple access with \(\alpha\)-fairness. IEEE Journal Selected Areas Communications, 35(10), 2357–2369.

    Article  Google Scholar 

  25. Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal Selected Areas Communications, 35(12), 2744–2757.

    Google Scholar 

  26. Sun, Y., Ng, D. W. K., Ding, Z., & Schober, R. (2016). Optimal joint power and subcarrier allocation for MC-NOMA systems. In Proceedings of the IEEE Global Communications Conference.

  27. Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2015). Joint optimization of power and channel allocation with non-orthogonal multiple access for 5G cellular systems. In Proceedings of the IEEE Global Communications Conference (pp. 1–6).

  28. Liu, Y.-F., & Dai, Y.-H. (2014). On the complexity of joint subcarrier and power allocation for multi-user OFDMA systems. IEEE Transactions Signal Processing, 62(3), 583–596.

    Article  MathSciNet  MATH  Google Scholar 

  29. Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions Wireless Communications, 15(12), 8580–8594.

    Article  Google Scholar 

  30. Liu, F., & Petrova, M. (2017). Performance of proportional fair scheduling for downlink non-orthogonal multiple access systems. Computing Research Repository. CoRR. arXiv:abs/1703.03113.

  31. Bhatia, S., & Chandni., C. (2017). An efficient scheduling algorithm for NOMA in LTE and 5G Networks. International Journal of Trend in Research and Development, 4(4), 522–525.

    Google Scholar 

  32. Otao, N., Kishiyama, Y., & Higuchi, K. (2012). Performance of nonorthogonal access with SIC in cellular downlink using proportional fair-based resource allocation. In IEEE International Symposium on Wireless Communication Systems (pp. 476–480).

  33. Liu, S., Zhang, C., & Lyu, G. (2015). User selection and power schedule for downlink non-orthogonal multiple access (NOMA) system. In Proceedings of the IEEE International Communications Conference (pp. 2561–2565).

  34. Liu, F., Mahonen, P., & Petrova, M. (2015). Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In Proceedings of the IEEE PIMRC (pp. 1306–1310).

  35. Cui, J., Liu, Y., Ding, Z., Fan, P., & Nallanathan, A. (2018). Optimal user scheduling and power allocation for millimeter wave NOMA systems. IEEE Transactions on Wireless Communications, 17(3), 1502–1517.

    Article  Google Scholar 

  36. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal Selected Areas Communications, 35(10), 2181–2195.

    Article  Google Scholar 

  37. Choi, J. (2017). NOMA based random access with multichannel ALOHA. IEEE Journal Selected Areas Communications, 35(12), 2736–2743.

    Article  Google Scholar 

  38. Liu, Y., Li, X., Yu, F. R., Ji, H., Zhang, H., & Leung, V. C. (2017). Grouping and cooperating among access points in user-centric ultra-dense networks with non-orthogonal multiple access. IEEE Journal Selected Areas in Communications, 35(10), 2295–2311.

    Article  Google Scholar 

  39. Sankararaman, A., & Baccelli, F. (2015). CSMA k-SIC-A class of distributed MAC protocols and their performance evaluation. In Proceedings of the IEEE INFOCOM.

  40. Uddin, M. F., & Mahmud, M. S. (2017). Carrier sensing based medium access control protocol for WLANs exploiting successive interference cancellation. IEEE Transactions on Wireless Communications, 16(6), 4120–4135.

    Article  Google Scholar 

  41. Sarker, M., & Uddin, M. F. (2017). Saturation throughput analysis of a carrier sensing based MU-MIMO MAC protocol in a WLAN under fading and shadowing. Wireless Networks. https://doi.org/10.1007/s11276-017-1614-y.

    Google Scholar 

  42. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  43. Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in a distributed CSMA algorithm: Collisions and stability. IEEE/ACM Transactions on Networking, 19(23), 816–823.

    Article  Google Scholar 

  44. Ni, J., Tan, B., & Srikant, R. (2010). Q-CSMA: Queue length based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks. In Proceedings of the IEEE INFOCOM Mini-Conference (pp. 1–5).

  45. Qian, D., Zheng, D., Zhang, J., Shroff, N. B., & Joo, C. (2013). Distributed CSMA algorithms for link scheduling in multihop MIMO networks under SINR model. IEEE/ACM Transactions on Networking, 21(3), 746–759.

    Article  Google Scholar 

  46. Hadzi-Velkov, Z., & Spasenovski, B. (2002). Capture effect in IEEE 802.11 basic service area under influence of rayleigh fading and near/far effect. In IEEE Personal Indoor and Mobile Radio Communications Symposium (pp. 172–176).

  47. Kim, J. H., & Lee, J. K. (1999). Capture effects of wirelss CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Transactions on Vehicular Technology, 48, 1277–1286.

    Article  Google Scholar 

  48. Li, X., & Zeng, Q. (2006). Performance analysis of the IEEE 802.11 MAC protocols over a WLAN with capture effect. Information and Media Technologies, 1, 679–685.

    Google Scholar 

  49. Iyer, A., Rosenberg, C., & Karnik, A. (2009). What is the right model for wireless channel interference? IEEE/ACM Transaction on Networking, 8(5), 2662–2671.

    Google Scholar 

  50. Uddin, M. F., Rosenberg, C., Zhuang, W., Mitran, P., & Girard, A. (2014). Joint routing and medium access control in fixed random access wireless multihop networks. IEEE/ACM Transaction on Networking, 22(1), 80–93.

    Article  Google Scholar 

  51. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation in non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Forkan Uddin.

Appendices

Appendix 1

Condition for successful downlink transmission

From (2), we obtain

$$\begin{aligned} P_i \ge \frac{N_0\beta }{h_i}+\beta \sum _{j=i+1}^{M}P_j \quad \forall i \in v. \end{aligned}$$
(21)

For \(i=M\) and \(i=M-1\), the expression in (21) can be written as the following two expressions.

$$\begin{aligned} P_M\ge \frac{N_0\beta }{h_M} \end{aligned}$$
(22)
$$\begin{aligned} P_{M-1}\ge \frac{N_0\beta }{h_{M-1}}+\beta P_M \end{aligned}$$
(23)

Using (22) in (23), \(P_{M-1}\) can be obtained as

$$\begin{aligned} P_{M-1}\ge N_0 \bigg ( \frac{\beta }{h_{M-1}} + \frac{\beta ^2}{h_M}\bigg ). \end{aligned}$$
(24)

Similarly, one can write down the expressions for \(P_{M-2}\), \(P_{M-3}\) and so on up to \(P_1\). The expressions of \(P_{M-2}\) and \(P_{M-3}\) can be written as

$$\begin{aligned} P_{M-2}\ge N_0 \bigg ( \frac{\beta }{h_{M-2}} + \frac{\beta ^2}{h_{M-1}}+ \frac{\beta (\beta +\beta ^2)}{h_{M}}\bigg ) \end{aligned}$$
(25)

and

$$\begin{aligned} P_{M-3}\ge N_0 \bigg ( \frac{\beta }{h_{M-3}} + \frac{\beta ^2}{h_{M-2}}+ \frac{\beta (\beta +\beta ^2)}{h_{M-1}}+ \frac{\beta (\beta +\beta ^2+\beta (\beta +\beta ^2))}{h_M}\bigg ). \end{aligned}$$
(26)

According to the expression of \(B_n\) in (5), \(B_0=\beta\), \(B_1=\beta ^2\), \(B_2=\beta (\beta +\beta ^2)\) and \(B_3=\beta (\beta +\beta ^2+\beta (\beta +\beta ^2))\). Thus, the expressions of \(P_{M-2}\) in (25) and \(P_{M-3}\) in (26) can be re-written as

$$\begin{aligned} P_{M-2}\ge N_0 \bigg ( \frac{B_0}{h_{M-2}} + \frac{B_1}{h_{M-1}}+ \frac{B_2}{h_{M}}\bigg ) \end{aligned}$$
(27)

and

$$\begin{aligned} P_{M-3}\ge N_0 \bigg ( \frac{B_0}{h_{M-3}} + \frac{B_1}{h_{M-2}}+ \frac{B_2}{h_{M-1}}+ \frac{B_3}{h_M}\bigg ). \end{aligned}$$
(28)

We find that, similar to \(P_M\), \(P_{M-1}\), \(P_{M-2}\) and \(P_{M-3}\), the expressions of \(P_{M-k}\) for any \(k \in \{0,1,2,\ldots ,(M-1)\}\) can be written as

$$\begin{aligned} P_{M-k}\ge N_0 \bigg ( \sum _{m=0}^{k} \frac{B_m}{h_{M-(k-m)}}\bigg ). \end{aligned}$$
(29)

Since the total transmit power budget at the AP is \(P_t\) which is mentioned by the condition in (3), the conditions for successful simultaneous transmission to the users in set v can be combined as

$$\begin{aligned} P_t&\ge \sum _{k=0}^{M-1} P_{M-k}\nonumber \\&\ge \sum _{k=0}^{M-1} N_0 \bigg ( \sum _{m=0}^{k} \frac{B_m}{h_{M-(k-m)}}\bigg ). \end{aligned}$$
(30)

Appendix 2

Computation of \(p_k\)

Let \(p^s_{k'}\) be the probability that the data transmission to \(k'\) users among the K users is successful with NOMA technique. Thus, \(p_k\) can be calculated as \(p_k=\bigcup _{k'=k}^{K}p^s_{k'}\). Given that data transmission to \(k'>k\) users are successful, the value of \(p^s_k\) is 1. Thus, using probability theory one can show that \(p_k=p^s_k\). From the K users, k users can be selected in \({K \atopwithdelims ()k}\) ways. The number of ways of selection of k users is denoted by \(K_k\), i.e., \(K_k={K \atopwithdelims ()k}\). Thus, the number of events in computing \(p_k\) is \(K_k\). The value of \(p_k\) can be computed as

$$\begin{aligned} p_k=Pr(E_1\cup E_2 \cup E_3\ldots \cup E_{K_k}) \end{aligned}$$
(31)

where, \(E_i, 1\le i \le K_k\), is the i-th event in computing the value of \(p_k\). Let the distance of a user \(n \in \mathcal {K}\) from the AP is denoted by \(r_n\). Since the distances \(r_1, r_2, \ldots , r_{K-1}\), and \(r_K\) are random variables, there are K! possible combinations for arranging them according to the descending order of distances. Thus, (31) can be re-written as

$$\begin{aligned} p_k&=K!Pr(E_1\cup E_2 \cup E_3\ldots \cup E_{K_k}|r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K) Pr(r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K). \end{aligned}$$
(32)

We assume that \(E_1\) represents the event for successful data transmission to the user-set \(v_1=\{K, K-1, \ldots , K-k+1\}\). Note that the distances of the users of the user-set \(v_1\) from the AP are \(r_K, r_{K-1}, \ldots , r_{K-k+2},\) and \(r_{K-k+1}\) with \(r_{K-k+1}\ge r_{K-k+2}\ge \cdots \ge r_{K-1}\ge r_K\) and \(h_{K-k+1}\le h_{K-k+2}\le \cdots \le h_{K-1}\le h_K\). According to the NOMA interference model in (2) and (3) ,

$$\begin{aligned}&Pr(E_1|r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K)\nonumber \\&\quad = Pr\bigg (\frac{P_{K-k+1}h_{K-k+1}}{N_0+h_{K-k+1}(\sum _{j=2}^{k}P_{K-k+j})}\ge \beta ,\frac{P_{K-k+2}h_{K-k+2}}{N_0+h_{K-k+2}(\sum _{j=3}^{k}P_{K-k+j})}\ge \beta, \nonumber \\&\quad \ldots ,\frac{P_{K-1}h_{K-1}}{N_0+h_{K-1}P_K}\ge \beta , \frac{P_Kh_K}{N_0}\ge \beta |r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K, \sum _{j=1}^{k}P_{K-k+j}\le P_t\bigg ). \end{aligned}$$
(33)

Denote by \(E_a, a \ne 1\), an event chosen arbitrarily from the other \(K_k-1\) events with the user-set \(v_a\). Since \(h_{K-k+1}\le h_{K-k+2}\le \cdots \le h_{K-1}\le h_K\), at least one of the users of the user-set \(v_a\) has channel gain lower than the channel gains of the users of the user-set \(v_1\) and hence, by observing the expression in (33), one can conclude that \(Pr(E_1|r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K)=1\) if \(Pr(E_a|r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K)=1\). So, \(Pr(E_1 \cup E_a |r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K)=Pr(E_1 |r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K).\) Using the above conclusion, (32) can be re-written as

$$\begin{aligned} p_k&=K!Pr\big (E_1|r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K) Pr(r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K\big )\nonumber \\&=K!Pr(E_1,r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K) \end{aligned}$$
(34)

Using the interference model in (2) and (3) as used in (33), (34) can be re-written as

$$\begin{aligned} p_k&=K!Pr\bigg (\frac{P_{K-k+1}h_{K-k+1}}{N_0+h_{K-k+1}(\sum _{j=2}^{k}P_{K-k+j})}\ge \beta ,\frac{P_{K-k+2}h_{K-k+2}}{N_0+h_{K-k+2}(\sum _{j=3}^{k}P_{K-k+j})}\ge \beta, \nonumber \\&\ldots ,\frac{P_{K-1}h_{K-1}}{N_0+h_{K-1}P_K}\ge \beta , \frac{P_Kh_K}{N_0}\ge \beta , r_1\ge r_2 \ge \cdots \ge r_{K-1}\ge r_K| \sum _{j=1}^{k}P_{K-k+j}\le P_t\bigg ). \end{aligned}$$
(35)

To make the visualization simple, we replace \(P_{K-i}\), \(h_{K-i}\) and \(r_{K-i}\) by \(P_{i+1}\), \(h_{i+1}\) and \(r_{i+1}\), respectively for \(1\le i \le K\). Thus, (35) can be re-written as

$$\begin{aligned} p_k&=K!Pr\bigg (\frac{P_{k}h_{k}}{N_0+h_{k}(\sum _{j=1}^{k-1}P_{j})}\ge \beta ,\frac{P_{k-1}h_{k-1}}{N_0+h_{k-1}(\sum _{j=1}^{k-2}P_{j})}\ge \beta ,\nonumber \\&\ldots ,\frac{P_{2}h_{2}}{N_0+h_{2}P_1}\ge \beta , \frac{P_1h_1}{N_0}\ge \beta , r_1\le r_2 \le \cdots \le r_{K-1}\le r_K| \sum _{j=1}^{k}P_{j}\le P_t\bigg ). \end{aligned}$$
(36)

Conditioning on \(r_1\), (36) can be written as

$$\begin{aligned} p_k&=K! \int _{0}^{1} Pr\bigg (\frac{P_{k}h_{k}}{N_0+h_{k}(\sum _{j=1}^{k-1}P_{j})}\ge \beta ,\frac{P_{k-1}h_{k-1}}{N_0+h_{k-1}(\sum _{j=1}^{k-2}P_{j})}\ge \beta , \nonumber \\&\ldots ,\frac{P_{2}h_{2}}{N_0+h_{2}P_1}\ge \beta , \frac{P_1h'_1}{N_0}\ge \beta , r'_1\le r_2 \le \cdots \le r_{K-1}\le r_K| \sum _{j=1}^{k}P_{j}\le P_t\bigg ) 2r_1' dr_1'\nonumber \\&=K! \int _{0}^{1} Pr\bigg (\frac{P_{k}h_{k}}{N_0+h_{k}(\sum _{j=1}^{k-1}P_{j})}\ge \beta ,\frac{P_{k-1}h_{k-1}}{N_0+h_{k-1}(\sum _{j=1}^{k-2}P_{j})}\ge \beta , \nonumber \\&\ldots ,\frac{P_{2}h_{2}}{N_0+h_{2}P_1}\ge \beta , r'_1\le r_2 \le \cdots \le r_{K-1}\le r_K| \sum _{j=1}^{k}P_{j}\le P_t, P_1 \ge \frac{N_0\beta }{h_1'}\bigg ) 2r_1' dr_1' \end{aligned}$$
(37)

where, \(h'_i=\big (\frac{r_i'}{d_0}\big )^{-\eta }\). Again, conditioning on \(r_2\), (37) can be re-written as

$$\begin{aligned} p_k&=K! \int _{0}^{1}\int _{r'_1}^{1} Pr\bigg (\frac{P_{k}h_{k}}{N_0+h_{k}(\sum _{j=1}^{k-1}P_{j})}\ge \beta ,\frac{P_{k-1}h_{k-1}}{N_0+h_{k-1}(\sum _{j=1}^{k-2}P_{j})}\ge \beta ,\ldots ,\frac{P_{3}h_{3}}{N_0+h_{3}(P_1+P_2)}\nonumber \\&\ge \beta , r'_2 \le \cdots \le r_{K-1}\le r_K| \sum _{j=1}^{k}P_{j}\le P_t, P_1 \ge \frac{N_0\beta }{h_1'}, P_2 \ge N_0\big (\frac{\beta }{h'_2}+\frac{\beta ^2}{h'_1}\big )\bigg ) 2r'_2 2r'_1 dr'_2 dr_1'. \end{aligned}$$
(38)

Again, conditioning on \(r_3, r_4, \ldots ,\) and \(r_{k-1}\) and using the expression in (29), (38) can be written as

$$\begin{aligned} p_k&=K! \int _{0}^{1}\int _{r'_1}^{1}\ldots \int _{r'_{k-2}}^{1} Pr\bigg (\frac{P_{k}h_{k}}{N_0+h_{k}(\sum _{j=1}^{k-1}P_{j})}\ge \beta , r'_{k-1} \le r_k \le \cdots \le r_{K-1}\le r_K| \sum _{j=1}^{k}P_{j}\le P_t,\nonumber \\&P_i \ge N_0 \big ( \sum _{m=1}^{i} \frac{B_{m-1}}{h'_{i-m+1}}\big ), i\le k-1 \bigg ) 2r'_{k-1}\ldots 2r'_2 2r'_1 dr'_{k-1}\ldots dr'_2 dr_1'. \end{aligned}$$
(39)

Since in (39), \(\frac{P_{k}h_{k}}{N_0+h_{k}(\sum _{j=1}^{k-1}P_{j})}\ge \beta\) and \(\sum _{j=1}^{k}P_{j}\le P_t\), we obtain,

$$\begin{aligned} h_k(P_t-\sum _{j=1}^{k-1}P_{j})\ge \beta (N_0+h_k\sum _{j=1}^{k-1}P_{j}). \end{aligned}$$
(40)

Considering \(h_k=(\frac{r_k}{d_0})^{-\eta }\) and \(P_i=N_0 \big ( \sum _{m=1}^{i} \frac{B_{m-1}}{h'_{i-m+1}}\big )\), (40) can be re-written as

$$\begin{aligned} r_k&\le d_0 \bigg ( \frac{P_t-(\beta +1)\sum _{j=1}^{k-1} N_0 \big ( \sum _{m=1}^{j} \frac{B_{m-1}}{h'_{j-m+1}}\big )}{\beta N_0 } \bigg )^{\frac{1}{\eta }}\nonumber \\&\le F(P_t, r'_1,r'_2,\ldots , r'_{k-1}) \end{aligned}$$
(41)

where, F is a function of the system parameters which is defined as \(F= d_0 \bigg ( \frac{P_t-(\beta +1)\sum _{j=1}^{k-1} N_0 \big ( \sum _{m=1}^{j} \frac{B_{m-1}}{h'_{j-m+1}}\big )}{\beta N_0 } \bigg )^{\frac{1}{\eta }}\). Next, using (41) and conditioning on \(r_k\), \(r_{k+1}, \ldots , r_{K}\), (39) can be written as

$$\begin{aligned} p_k&=K! \int _{0}^{1}\int _{r'_1}^{1}\ldots \int _{r'_{k-2}}^{1} \int _{r'_{k-1}}^{F} \int _{r'_{k}}^{1} \ldots \int _{r'_{K-1}}^{1} 2r'_{K} \ldots 2r'_{k+1} 2r'_{k} 2r'_{k-1}\ldots 2r'_2 2r'_1\nonumber \\&dr'_{K} \ldots dr'_{k+1} dr'_{k} dr'_{k-1}\ldots dr'_2 dr_1'. \end{aligned}$$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.F. Throughput performance of NOMA in WLANs with a CSMA MAC protocol. Wireless Netw 25, 3365–3384 (2019). https://doi.org/10.1007/s11276-018-1730-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1730-3

Keywords

Navigation