Skip to main content

Sanguinate: History and Clinical Evaluation of a Multimodal HBOCs

  • Chapter
  • First Online:
Blood Substitutes and Oxygen Biotherapeutics

Abstract

Sanguinate is a unique polyethylene glycol modified form of bovine hemoglobin that represents the latest generation of hemoglobin-based oxygen carriers. Its structural characteristics and altered hemoglobin-oxygen binding affinity allow it to bypass obstructions in the microcirculation and effectively deliver oxygen to ischemic tissues. Sanguinate is also able to endogenously deliver carbon monoxide, which has been shown to reduce inflammation, oxidative stress, mitigate ischemia-reperfusion injury, and promote vasodilation. Only results from phase I trials using Sanguinate have been published, although several phase II trials have been completed. While these trials suggest a possible risk of myocardial injury there was little evidence that it was due to Sanguinate. Additional larger studies are needed to better define this relationship. It has been successfully used under emergency circumstances in over 100 patients with severe anemia and impaired oxygen delivery where blood transfusion was contraindicated. The additional therapeutic effects (anti-inflammatory, anti-vasoconstrictive, plasma expansion) may make Sanguinate useful in the treatment of disorders in which blood is ineffective, such as stroke, inflammatory diseases, and sepsis. As such, Sanguinate is more effectively termed a resuscitation fluid than blood substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amberson WR, Flexner J, Steggerda FR, Mulder AG, Tendler MJ, Pankratz DS, et al. On the use of ringer-locke solutions containing hemoglobin as a substitute for normal blood in mammals. J Cell Comp Physiol. 1934;5(3):359–82.

    Article  CAS  Google Scholar 

  2. Jahr JS, Guinn NR, Lowery DR, Shore-Lesserson L, Shander A. Blood substitutes and oxygen therapeutics: a review. Anesth Analg. 2021;132(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  3. Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299(19):2304–12.

    Article  CAS  PubMed  Google Scholar 

  4. Misra H, Bainbridge J, Berryman J, Abuchowski A, Galvez KM, Uribe LF, et al. A Phase Ib open label, randomized, safety study of Sanguinate™ in patients with sickle cell anemia. Rev Bras Hematol Hemoter. 2017;39(1):20–7.

    Article  PubMed  Google Scholar 

  5. Khan F, Singh K, Friedman MT. Artificial blood: the history and current perspectives of blood substitutes. Discoveries (Craiova). 2020;8(1):e104.

    Article  Google Scholar 

  6. Romito BT, McBroom MM, Bryant D, Gamez J, Merchant A, Hill SE. The effect of Sanguinate(®) (PEGylated carboxyhemoglobin bovine) on cardiopulmonary bypass functionality using a bovine whole blood model of normovolemic hemodilution. Perfusion. 2020;35(1):19–25.

    Article  PubMed  Google Scholar 

  7. Nugent WH, Jubin R, Buontempo PJ, Kazo F, Song BK. Microvascular and systemic responses to novel PEGylated carboxyhaemoglobin-based oxygen carrier in a rat model of vaso-occlusive crisis. Artif Cells Nanomed Biotechnol. 2019;47(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  8. Abuchowski A. Sanguinate (PEGylated Carboxyhemoglobin Bovine): mechanism of action and clinical update. Artif Organs. 2017;41(4):346–50.

    Article  PubMed  Google Scholar 

  9. Bartolotti P, Faure E, KIpnis E. Inflammasomes in tissue damages and immune disorders after trauma. Front Immunol. 2018;9:1900.

    Article  CAS  Google Scholar 

  10. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38(12):1336–45.

    Article  PubMed  Google Scholar 

  11. D’Angelo MR, Dutton RP. Management of trauma-induced coagulopathy: trends and practices. AANA J. 2010;78(1):35–40.

    PubMed  Google Scholar 

  12. Talukder AR, Quader F, Momen MA. Pathophysiological reaction of the body to trauma: a review update. J Sci Found. 2015;13(1):15–20.

    Article  Google Scholar 

  13. Davidge KS, Motterlini R, Mann BE, Wilson JL, Poole RK. Carbon monoxide in biology and microbiology: surprising roles for the “Detroit perfume”. Adv Microb Physiol. 2009;56:85–167.

    Article  CAS  PubMed  Google Scholar 

  14. Ismailova A, Kuter D, Bohle DS, Butler IS. An overview of the potential therapeutic applications of CO-releasing molecules. Bioinorg Chem Appl. 2018;2018:8547364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22(5):315–29.

    Article  CAS  PubMed  Google Scholar 

  16. De Groot AS, Terry F, Cousens L, Martin W. Beyond humanization and de-immunization: tolerization as a method for reducing the immunogenicity of biologics. Expert Rev Clin Pharmacol. 2013;6(6):651–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Misra H, Lickliter J, Kazo F, Abuchowski A. PEGylated carboxyhemoglobin bovine (Sanguinate): results of a phase I clinical trial. Artif Organs. 2014;38(8):702–7.

    Article  CAS  PubMed  Google Scholar 

  18. Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release. 2012;161(2):461–72.

    Article  CAS  PubMed  Google Scholar 

  19. Cabrales P. Examining and mitigating acellular hemoglobin vasoactivity. Antioxid Redox Signal. 2013;18(17):2329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cabrales P, Intaglietta M. Blood substitutes: evolution from noncarrying to oxygen- and gas-carrying fluids. ASAIO J. 2013;59(4):337–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsai AG, Cabrales P, Manjula BN, Acharya SA, Winslow RM, Intaglietta M. Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers. Blood. 2006;108(10):3603–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lui FE, Dong P, Kluger R. Polyethylene glycol conjugation enhances the nitrite reductase activity of native and cross-linked hemoglobin. Biochemistry. 2008;47(40):10773–80.

    Article  CAS  PubMed  Google Scholar 

  23. Levitt DG, Levitt MD. Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin Pharmacol. 2015;7:37–56.

    PubMed  PubMed Central  Google Scholar 

  24. Hess DR. Inhaled carbon monoxide: from toxin to therapy. Respir Care. 2017;62(10):1333–42.

    Article  PubMed  Google Scholar 

  25. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9(9):728–43.

    Article  CAS  PubMed  Google Scholar 

  26. Deng X, Yasuda H, Sasaki T, Yamaya M. Low-dose carbon monoxide inhibits rhinovirus replication in human alveolar and airway epithelial cells. Tohoku J Exp Med. 2019;247(4):215–22.

    Article  CAS  PubMed  Google Scholar 

  27. Nugent WH, Sheppard FR, Dubick MA, Cestero RF, Darlington DN, Jubin R, et al. Microvascular and systemic impact of resuscitation with PEGylated carboxyhemoglobin-based oxygen carrier or hetastarch in a rat model of transient hemorrhagic shock. Shock. 2020;53(4):493–502.

    Article  CAS  PubMed  Google Scholar 

  28. Bachert SE, Dogra P, Boral LI. Alternatives to transfusion. Am J Clin Pathol. 2020;153(3):287–93.

    PubMed  Google Scholar 

  29. Collins JA, Rudenski A, Gibson J, Howard L, O’Driscoll R. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve. Breathe (Sheff). 2015;11(3):194–201.

    Article  Google Scholar 

  30. Secomb TW. Hemodynamics. Compr Physiol. 2016;6(2):975–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abu Jawdeh BG, Woodle ES, Leino AD, Brailey P, Tremblay S, Dorst T, et al. A phase Ib, open-label, single arm study to assess the safety, pharmacokinetics, and impact on humoral sensitization of Sanguinate infusion in patients with end-stage renal disease. Clin Transplant. 2018;32(1):e13155.

    Article  CAS  Google Scholar 

  32. McConachie S, Wahby K, Almadrahi Z, Wilhelm S. Early experiences with PEGylated carboxyhemoglobin bovine in anemic Jehovah’s Witnesses: a case series and review of the literature. J Pharm Pract. 2020;33(3):372–7.

    Article  PubMed  Google Scholar 

  33. Brotman I, Kocher M, McHugh S. Bovine hemoglobin-based oxygen carrier treatment in a severely anemic Jehovah’s Witness patient after cystoprostatectomy and nephrectomy: a case report. A A Pract. 2019;12(7):243–5.

    Article  PubMed  Google Scholar 

  34. Holzner ML, DeMaria S, Haydel B, Smith N, Flaherty D, Florman S. Pegylated bovine carboxyhemoglobin (Sanguinate) in a Jehovah’s witness undergoing liver transplant: a case report. Transplant Proc. 2018;50(10):4012–4.

    Article  CAS  PubMed  Google Scholar 

  35. Thenuwara K, Thomas J, Ibsen M, Ituk U, Choi K, Nickel E, et al. Use of hyperbaric oxygen therapy and PEGylated carboxyhemoglobin bovine in a Jehovah’s Witness with life-threatening anemia following postpartum hemorrhage. Int J Obstet Anesth. 2017;29:73–80.

    Article  CAS  PubMed  Google Scholar 

  36. Sam C, Desai P, Laber D, Patel A, Visweshwar N, Jaglal M. Pegylated bovine carboxyhaemoglobin utilisation in a thrombotic thrombocytopenic purpura patient. Transfus Med. 2017;27(4):300–2.

    Article  CAS  PubMed  Google Scholar 

  37. DeSimone RA, Berlin DA, Avecilla ST, Goss CA. Investigational use of PEGylated carboxyhemoglobin bovine in a Jehovah’s Witness with hemorrhagic shock. Transfusion. 2018;58(10):2297–300.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dhar R, Misra H, Diringer MN. Sanguinate™ (PEGylated carboxyhemoglobin bovine) improves cerebral blood flow to vulnerable brain regions at risk of delayed cerebral ischemia after subarachnoid hemorrhage. Neurocrit Care. 2017;27(3):341–9.

    Article  CAS  PubMed  Google Scholar 

  39. Roesch EA, Nichols DP, Chmiel JF. Inflammation in cystic fibrosis: an update. Pediatr Pulmonol. 2018;53(S3):S30–s50.

    Article  PubMed  Google Scholar 

  40. Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide pathway to resolve lung hyper-inflammation and restore a regulated immune response in cystic fibrosis. Front Pharmacol. 2020;11:1059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Di Pietro C, Öz HH, Martis V, Zhang P, Jubin R, Abuchowski A, et al. Targeting the HO-1/CO Pathway with Sanguinate: toward development of a novel anti-inflammatory therapy for cystic fibrosis (CF) lung disease. American Thoracic Society 2019 International Conference, Dallas, 2019. p. A6187.

    Google Scholar 

  42. Paoli CJ, Reynolds MA, Sinha M, Gitlin M, Crouser E. Epidemiology and costs of sepsis in the United States-an analysis based on timing of diagnosis and severity level. Crit Care Med. 2018;46(12):1889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–28.

    Article  CAS  PubMed  Google Scholar 

  44. Tsoyi K, Hall SR, Dalli J, Colas RA, Ghanta S, Ith B, et al. Carbon monoxide improves efficacy of mesenchymal stromal cells during sepsis by production of specialized proresolving lipid mediators. Crit Care Med. 2016;44(12):e1236–e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guerci P, Ergin B, Kandil A, Ince Y, Heeman P, Hilty MP, et al. Resuscitation with PEGylated carboxyhemoglobin preserves renal cortical oxygenation and improves skeletal muscle microcirculatory flow during endotoxemia. Am J Physiol Renal Physiol. 2020;318(5):F1271–F83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan T. Romito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romito, B.T., Romito, J.W., Abuchowski, A. (2022). Sanguinate: History and Clinical Evaluation of a Multimodal HBOCs. In: Liu, H., Kaye, A.D., Jahr, J.S. (eds) Blood Substitutes and Oxygen Biotherapeutics. Springer, Cham. https://doi.org/10.1007/978-3-030-95975-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95975-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95974-6

  • Online ISBN: 978-3-030-95975-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics