Skip to main content

Hemoglobin-Based Oxygen Carriers: Brief History, Pharmacology and Design Strategies, Review of the Major Products in Clinical Trials, On-Going Studies, and Coagulation Concerns

  • Chapter
  • First Online:
Blood Substitutes and Oxygen Biotherapeutics

Abstract

Transfusion of erythrocytes (RBC) to treat acute or chronic anemia has significant drawbacks, given the risks of transfusion, volunteer donor requirements, limited supply with increasing demand, especially during a pandemic such as COVID-19, and erythrocytes are often unavailable in emergency situations or where blood is not an option. Significant research has been undertaken for almost 100 years to attempt to replicate the functions of RBCs with oxygen carriers/oxygen therapeutics based on hemoglobin. Oxygen carriers that have been evaluated are hemoglobin-based oxygen carriers (HBOCs). HBOCs utilize hemoglobin (Hb) to transport oxygen around the body. Blood transfusion may be critical therapy in hemorrhagic trauma, various pathologies both acute and chronic, and surgical interventions. It has some important goals: the first and most important is to recover oxygen delivery to organs, additionally, when restoration of circulating blood volume is achieved, maintenance of adequate blood pressure to ensure enough blood flow to deliver the oxygen to the microcirculation and resolving oxygen debt.

This chapter will review the history of HBOCs, discuss how HBOCs have been designed and how developed HBOCs differ from each other based on their pharmacology and physiology, highlight all major products to undergo human trials including one extensively studied product approved for human use in two countries (Hemopure), introduce newer products still under development, and finally present translational and clinical trials studying whether or not certain HBOCs may cause coagulation issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

°C:

degrees centigrade

2-3 DPG:

2,3 Diphosphoglycerate

CABG:

coronary artery bypass graft

cADP:

collagen and adenosine diphosphate, a reagent for PFA-100 measurement of platelet adhesion

cEPI:

collagen and epinephrine, a reagent for PFA-100 measurement of platelet adhesion

CO:

carbon monoxide

Cu:

copper

DBBF:

bis(dibromosalicyl) fumarate

dL:

deciliter

EU:

European Union

FDA:

United States Food and Drug Administration

g:

gram

g/dL:

gram per deciliter

Hb:

hemoglobin

Hb4:

Four strands of hemoglobin to form tetramer

HBOC:

Hemoglobin-based oxygen carrier

HIV:

Human immunodeficiency virus

IND:

Investigational New Drug Application

kDa:

kilodalton

L:

liter

Lys:

lysine

M:

molar concentration

M101:

HEMO2-life

MA:

Massachusetts

MAL-PEG:

maleimido polyethylene glycol

mg/dL:

milligrams per deciliter

NO:

nitric oxide

O2:

oxygen

PEG:

Polyethylene glycol

PFA-100:

Platelet Function Analyzer-100

PLP:

pyridoxal-5′-phosphate

pRBC:

packed red blood cells

r:

recombinant

RBC:

red blood cell

SFH:

Stroma Free Hemoglobin

SOD:

superoxide dismutase

TACO:

Transfusion associated circulatory overload

US:

United States

Zn:

zinc

α:

alpha

β:

beta

References

  1. Jahr JS, Walker V, Manoochehri K. Blood substitutes as pharmacotherapies in clinical practice. Curr Opin Anaesthesiol. 2007;20(4):325–30.

    Article  PubMed  Google Scholar 

  2. Schubert A, Przybelski RJ, Eidt JF, Lasky LC, Marks KE, Karafa M, et al. Diaspirin-crosslinked hemoglobin reduces blood transfusion in noncardiac surgery: a multicenter, randomized, controlled, double-blinded trial. Anesth Analg. 2003;97(2):323–32, table of contents.

    Article  CAS  PubMed  Google Scholar 

  3. Kasper SM, Walter M, Grüne F, Bischoff A, Erasmi H, Buzello W. Effects of a hemoglobin-based oxygen carrier (HBOC-201) on hemodynamics and oxygen transport in patients undergoing preoperative hemodilution for elective abdominal aortic surgery. Anesth Analg. 1996;83(5):921–7.

    Article  CAS  PubMed  Google Scholar 

  4. Greenburg AG, Kim HW. Use of an oxygen therapeutic as an adjunct to intraoperative autologous donation to reduce transfusion requirements in patients undergoing coronary artery bypass graft surgery. J Am Coll Surg. 2004;198(3):373–83; discussion 84–5.

    Article  PubMed  Google Scholar 

  5. Levy JH, Goodnough LT, Greilich PE, Parr GV, Stewart RW, Gratz I, et al. Polymerized bovine hemoglobin solution as a replacement for allogeneic red blood cell transfusion after cardiac surgery: results of a randomized, double-blind trial. J Thorac Cardiovasc Surg. 2002;124(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  6. Rentko V, Pearce B, Moon-Massat P, Gawryl M. Hemopure® (HBOC-201, Hemoglobin Glutamer-250 (Bovine)): preclinical studies. Blood Substitutes. Burlington, MA: Academic Press; 2006. p. 424–36.

    Google Scholar 

  7. Khan F, Singh K, Friedman MT. Artificial blood: the history and current perspectives of blood substitutes. Discoveries (Craiova). 2020;8(1):e104.

    Article  Google Scholar 

  8. Roghani K, Holtby RJ, Jahr JS. Effects of hemoglobin-based oxygen carriers on blood coagulation. J Funct Biomater. 2014;5(4):288–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenblatt MA. Strategies for minimizing the use of allogeneic blood during orthopedic surgery. Mt Sinai J Med. 2002;69(1–2):83–7.

    PubMed  Google Scholar 

  10. Habler O, Meier J, Pape A, Zwissler B. Indications for blood transfusion during orthopedic surgery. Orthopade. 2004;33(7):774–83.

    CAS  PubMed  Google Scholar 

  11. Goodnough LT, Brecher ME, Kanter MH, AuBuchon JP. Transfusion medicine. First of two parts – blood transfusion. N Engl J Med. 1999;340(6):438–47.

    Article  CAS  PubMed  Google Scholar 

  12. Vamvakas EC. Epidemiology of red blood cell utilization. Transfus Med Rev. 1996;10(1):44–61.

    Article  CAS  PubMed  Google Scholar 

  13. Tobias JD. Strategies for minimizing blood loss in orthopedic surgery. Semin Hematol. 2004;41(1 Suppl 1):145–56.

    Article  PubMed  Google Scholar 

  14. Jahr JS, Guinn NR, Lowery DR, Shore-Lesserson L, Shander A. Blood substitutes and oxygen therapeutics: a review. Anesth Analg. 2021;132(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  15. De Venuto F, Zuck TF, Zegna AI, Moores WY. Characteristics of stroma-free hemoglobin prepared by crystallization. J Lab Clin Med. 1977;89(3):509–16.

    PubMed  Google Scholar 

  16. Winslow RM, Vandegriff KD. Inventors method for production of stroma-free hemoglobin. United States of America 2004. https://patents.google.com/patent/US7989414B2/en. Accessed 03/01/2021.

  17. Cheung LC, Storm CB, Gabriel BW, Anderson WA. The preparation of stroma-free hemoglobin by selective DEAE-cellulose absorption. Anal Biochem. 1984;137(2):481–4.

    Article  CAS  PubMed  Google Scholar 

  18. Snyder SR, Welty EV, Walder RY, Williams LA, Walder JA. HbXL99 alpha: a hemoglobin derivative that is cross-linked between the alpha subunits is useful as a blood substitute. Proc Natl Acad Sci. 1987;84(20):7280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walder JA, inventor; University of Iowa Research Foundation (Iowa City, IA, US), assignee. Production of alpha-alpha cross-linked hemoglobins in high yield. United States patent US Patent Re. 34,271. 1993.

    Google Scholar 

  20. Chevalier A, Guillochon D, Nedjar N, Piot JM, Vijayalakshmi MW, Thomas D. Glutaraldehyde effect on hemoglobin: evidence for an ion environment modification based on electron paramagnetic resonance and Mossbauer spectroscopies. Biochem Cell Biol. 1990;68(4):813–8.

    Article  CAS  PubMed  Google Scholar 

  21. Varnado CL, Mollan TL, Birukou I, Smith BJZ, Henderson DP, Olson JS. Development of recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal. 2013;18(17):2314–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Natarajan C, Jiang X, Fago A, Weber RE, Moriyama H, Storz JF. Expression and purification of recombinant hemoglobin in Escherichia coli. PLoS One. 2011;6(5):e20176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bucci E, Kwansa H, Koehler RC, Matheson B. Development of zero-link polymers of hemoglobin, which do not extravasate and do not induce pressure increases upon infusion. Artif Cells Blood Substit Immobil Biotechnol. 2007;35(1):11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ea A, Ronda L, Bruno S, Paredi G, Marchetti M, Bettati S, et al. High- and low-affinity PEGylated hemoglobin-based oxygen carriers: differential oxidative stress in a Guinea pig transfusion model. Free Radic Biol Med. 2018;124:299–310.

    Article  CAS  Google Scholar 

  25. Alix P, Val-Laillet D, Turlin B, Ben Mosbah I, Burel A, Bobillier E, et al. Adding the oxygen carrier M101 to a cold-storage solution could be an alternative to HOPE for liver graft preservation. JHEP Rep. 2020;2(4):100119.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lupon E, Lellouch AG, Zal F, Cetrulo CL Jr, Lantieri LA. Combating hypoxemia in COVID-19 patients with a natural oxygen carrier, HEMO(2)Life® (M101). Med Hypotheses. 2021;146:110421.

    Article  CAS  PubMed  Google Scholar 

  27. Jahr JS, Akha AS, Holtby RJ. Crosslinked, polymerized, and PEG-conjugated hemoglobin-based oxygen carriers: clinical safety and efficacy of recent and current products. Curr Drug Discov Technol. 2012;9(3):158–65.

    Article  CAS  PubMed  Google Scholar 

  28. Winslow RM. Alphaalpha-crosslinked hemoglobin: was failure predicted by preclinical testing? Vox Sang. 2000;79(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  29. Hess JR. Review of modified hemoglobin research at letterman: attempts to delineate the toxicity of cell-free tetrameric hemoglobin. Artif Cells Blood Substit Immobil Biotechnol. 1995;23(3):277–89.

    Article  CAS  PubMed  Google Scholar 

  30. Saxena R, Wijnhoud AD, Carton H, Hacke W, Kaste M, Przybelski RJ, et al. Controlled safety study of a hemoglobin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke. 1999;30(5):993–6.

    Article  CAS  PubMed  Google Scholar 

  31. Sloan EP, Koenigsberg M, Gens D, Cipolle M, Runge J, Mallory MN, et al. Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: a randomized controlled efficacy trial. JAMA. 1999;282(19):1857–64.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng DC, Mazer CD, Martineau R, Ralph-Edwards A, Karski J, Robblee J, et al. A phase II dose-response study of hemoglobin raffimer (Hemolink) in elective coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2004;127(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  33. Hill SE, Gottschalk LI, Grichnik K. Safety and preliminary efficacy of hemoglobin raffimer for patients undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2002;16(6):695–702.

    Article  PubMed  Google Scholar 

  34. Greenburg AG, Kim HW. Hemoglobin-based oxygen carriers. Crit Care. 2004;8 Suppl 2(Suppl 2):S61–4.

    Article  PubMed  Google Scholar 

  35. Salazar Vázquez BY, Wettstein R, Cabrales P, Tsai AG, Intaglietta M. Microvascular experimental evidence on the relative significance of restoring oxygen carrying capacity vs. blood viscosity in shock resuscitation. Biochim Biophys Acta. 2008;1784(10):1421–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Moore EE, Moore FA, Fabian TC, Bernard AC, Fulda GJ, Hoyt DB, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the USA multicenter trial. J Am Coll Surg. 2009;208(1):1–13.

    Article  PubMed  Google Scholar 

  37. Jahr JS, Mackenzie C, Pearce LB, Pitman A, Greenburg AG. HBOC-201 as an alternative to blood transfusion: efficacy and safety evaluation in a multicenter phase III trial in elective orthopedic surgery. J Trauma. 2008;64(6):1484–97.

    CAS  PubMed  Google Scholar 

  38. Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology. 2006;105(1):198–208.

    Google Scholar 

  39. McClelland DBL, editor. Handbook of transfusion medicine. 4th ed. London, UK: United Kingdom Blood Services; 2007.

    Google Scholar 

  40. Murphy MF, Wallington TB, Kelsey P, Boulton F, Bruce M, Cohen H, et al. Guidelines for the clinical use of red cell transfusions. Br J Haematol. 2001;113(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  41. Practice Guidelines for blood component therapy. A report by the American Society of Anesthesiologists Task Force on blood component therapy. Anesthesiology. 1996;84(3):732–47.

    Google Scholar 

  42. Go AS, Yang J, Ackerson LM, Lepper K, Robbins S, Massie BM, et al. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation. 2006;113(23):2713–23.

    Article  CAS  PubMed  Google Scholar 

  43. Kim HW, Tai J, Greenburg AG. Active myogenic tone: a requisite for hemoglobin mediated vascular contraction? Artif Cells Blood Substit Immobil Biotechnol. 2004;32(3):339–51.

    Article  CAS  PubMed  Google Scholar 

  44. Kim HW, Greenburg AG. Mechanisms for vasoconstriction and decreased blood flow following intravenous administration of cell-free native hemoglobin solutions. Adv Exp Med Biol. 2005;566:397–401.

    Article  CAS  PubMed  Google Scholar 

  45. Chen JY, Scerbo M, Kramer G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics (Sao Paulo). 2009;64(8):803–13.

    Article  Google Scholar 

  46. LaMuraglia GM, O’Hara PJ, Baker WH, Naslund TC, Norris EJ, Li J, et al. The reduction of the allogenic transfusion requirement in aortic surgery with a hemoglobin-based solution. J Vasc Surg. 2000;31(2):299–308.

    Article  CAS  PubMed  Google Scholar 

  47. Björkholm M, Fagrell B, Przybelski R, Winslow N, Young M, Winslow RM. A phase I single blind clinical trial of a new oxygen transport agent (MP4), human hemoglobin modified with maleimide-activated polyethylene glycol. Haematologica. 2005;90(4):505–15.

    PubMed  Google Scholar 

  48. Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299(19):2304–12.

    Article  CAS  PubMed  Google Scholar 

  49. Keipert PE. Hemoglobin-based oxygen carrier (HBOC) development in trauma: previous regulatory challenges, lessons learned, and a path forward. Adv Exp Med Biol. 2017;977:343–50.

    Article  CAS  PubMed  Google Scholar 

  50. Misra H, Lickliter J, Kazo F, Abuchowski A. PEGylated carboxyhemoglobin bovine (SANGUINATE): results of a phase I clinical trial. Artif Organs. 2014;38(8):702–7.

    Article  CAS  PubMed  Google Scholar 

  51. Misra H, Bainbridge J, Berryman J, Abuchowski A, Galvez KM, Uribe LF, et al. A phase Ib open label, randomized, safety study of SANGUINATE™ in patients with sickle cell anemia. Rev Bras Hematol Hemoter. 2017;39(1):20–7.

    Article  PubMed  Google Scholar 

  52. Dhar R, Misra H, Diringer MN. SANGUINATE™ (PEGylated carboxyhemoglobin bovine) improves cerebral blood flow to vulnerable brain regions at risk of delayed cerebral ischemia after subarachnoid hemorrhage. Neurocrit Care. 2017;27(3):341–9.

    Article  CAS  PubMed  Google Scholar 

  53. Cabrales P, Sun G, Zhou Y, Harris DR, Tsai AG, Intaglietta M, et al. Effects of the molecular mass of tense-state polymerized bovine hemoglobin on blood pressure and vasoconstriction. J Appl Physiol (1985). 2009;107(5):1548–58.

    Article  CAS  Google Scholar 

  54. Kasil A, Giraud S, Couturier P, Amiri A, Danion J, Donatini G, et al. Individual and combined impact of oxygen and oxygen transporter supplementation during kidney machine preservation in a porcine preclinical kidney transplantation model. Int J Mol Sci. 2019;20(8):1992.

    Article  CAS  PubMed Central  Google Scholar 

  55. Kaminski J, Hannaert P, Kasil A, Thuillier R, Leize E, Delpy E, et al. Efficacy of the natural oxygen transporter HEMO(2) life(®) in cold preservation in a preclinical porcine model of donation after cardiac death. Transpl Int. 2019;32(9):985–96.

    Article  CAS  PubMed  Google Scholar 

  56. Le Meur Y, Badet L, Essig M, Thierry A, Büchler M, Drouin S, et al. First-in-human use of a marine oxygen carrier (M101) for organ preservation: a safety and proof-of-principle study. Am J Transplant. 2020;20(6):1729–38.

    Article  PubMed  CAS  Google Scholar 

  57. Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58(5):515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jahr JS, Weeks DL, Desai P, Lim JC, Butch AW, Gunther R, et al. Does OxyVita, a new-generation hemoglobin-based oxygen carrier, or oxyglobin acutely interfere with coagulation compared with normal saline or 6% hetastarch? An ex vivo thromboelastography study. J Cardiothorac Vasc Anesth. 2008;22(1):34–9.

    Article  PubMed  Google Scholar 

  59. Moallempour M, Jahr JS, Lim JC, Weeks D, Butch A, Driessen B. Methemoglobin effects on coagulation: a dose-response study with HBOC-200 (Oxyglobin) in a thrombelastogram model. J Cardiothorac Vasc Anesth. 2009;23(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  60. Harrington JP, Wollocko H. Molecular design properties of OxyVita hemoglobin, a new generation therapeutic oxygen carrier: a review. J Funct Biomater. 2011;2(4):414–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jahr JS, Liu H, Albert OK, Gull A, Moallempour M, Lim J, et al. Does HBOC-201 (Hemopure) affect platelet function in orthopedic surgery: a single-site analysis from a multicenter study. Am J Ther. 2010;17(2):140–7.

    Article  PubMed  Google Scholar 

  62. Harrington J, Wollocko H. Zero-link hemoglobin (OxyVita®): impact of molecular design characteristics on pre-clinical studies. In: Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 283–97.

    Google Scholar 

  63. Harrington JP, Wollocko J, Kostecki E, Wollocko H. Physicochemical characteristics of OxyVita hemoglobin, a zero-linked polymer: liquid and powder preparations. Artif Cells Blood Substit Immobil Biotechnol. 2011;39(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  64. Reynolds PS, Barbee RW, Skaflen MD, Ward KR. Low-volume resuscitation cocktail extends survival after severe hemorrhagic shock. Shock. 2007;28(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  65. Jahr JS, Moallempour M, Lim JC. HBOC-201, hemoglobin glutamer-250 (bovine), Hemopure (Biopure Corporation). Expert Opin Biol Ther. 2008;8(9):1425–33.

    Article  CAS  PubMed  Google Scholar 

  66. Kluger R, Foot JS, Vandersteen AA. Protein-protein coupling and its application to functional red cell substitutes. Chem Commun (Camb). 2010;46(8):1194–202.

    Article  CAS  Google Scholar 

  67. Jahr J, Driessen B, Gunther R, Lurie F, Lin J, Cheung A. Translational advances in second and third generation hemoglobin based oxygen carriers: one research team’s perspective. Artif Blood. 2009;17:1–7.

    Google Scholar 

  68. https://www.siemens-healthineers.com/en-us/hemostasis/systems/pfa-100. Accessed 16 Jan 2021.

  69. Arnaud F, Hammett M, Asher L, Philbin N, Rice J, Dong F, et al. Effects of bovine polymerized hemoglobin on coagulation in controlled hemorrhagic shock in swine. Shock. 2005;24(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  70. Chung M, Mayer L, Nourmand H, You M, Jahr J. Chapter 26: blood, blood products, and substitutes. In: Kaye A, Kaye A, Urman R, editors. Essentials of pharmacology for anesthesia, pain medicine, and critical care. New York: Springer; 2015. p. 421–32.

    Chapter  Google Scholar 

  71. Kozek-Langenecker SA. The effects of drugs used in anaesthesia on platelet membrane receptors and on platelet function. Curr Drug Targets. 2002;3(3):247–58.

    Article  CAS  PubMed  Google Scholar 

  72. Jilma B. Platelet function analyzer (PFA-100): a tool to quantify congenital or acquired platelet dysfunction. J Lab Clin Med. 2001;138(3):152–63.

    Article  CAS  PubMed  Google Scholar 

  73. Essex DW, Li M. Redox modification of platelet glycoproteins. Curr Drug Targets. 2006;7(10):1233–41.

    Article  CAS  PubMed  Google Scholar 

  74. Laing RW, Bhogal RH, Wallace L, Boteon Y, Neil DAH, Smith A, et al. The use of an acellular oxygen carrier in a human liver model of normothermic machine perfusion. Transplantation. 2017;101(11):2746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Estep TN. Haemoglobin-based oxygen carriers and myocardial infarction. Artif Cells Nanomed Biotechnol. 2019;47(1):593–601.

    Article  CAS  PubMed  Google Scholar 

  76. Silverman TA, Weiskopf RB. Hemoglobin-based oxygen carriers-current status and future directions. Anesthesiology. 2009;111:946–63.

    Article  PubMed  Google Scholar 

  77. Roghani K, Holtby RJ, Jahr JS. Effects of haemoglobin-based oxygen carriers on blood coagulation. J Funct Biomater. Columbus, OH. 2014;5(4):288–95. https://doi.org/10.3390/jfb5040288.

  78. Velthove KJ, Strengers PFW. 33 - Blood, blood components, plasma, and plasma products. In: Aronson JK, editor. Side effects of drugs annual. 34. Elsevier; 2012. p. 509–29.

    Google Scholar 

  79. Rameez S. Engineering cellular hemoglobin-based oxygen carriers for use in transfusion medicine. The Ohio State University; 2011.

    Google Scholar 

  80. Jahr JS. Editorial: Do approved blood substitutes reduce myocardial infarction size: is this the critical question? Br J Anaesth. 2009;103:470–1.

    Article  CAS  PubMed  Google Scholar 

  81. Jahr JS. Editorial: are newer generation hemoglobin-based oxygen carriers safe: do they offer an answer? Vasc Pharmacol. 2011;52:214.

    Google Scholar 

  82. Jahr JS, Sadighi A, Doherty L, Kim HW. Hemoglobin-based oxygen carriers: history, limits, brief summary of the state of the art, including clinical trials. In: Bettati S, Mozzarelli A, editors. Oxygen therapeutics: from transfusion to artificial blood. New York: Wiley.

    Google Scholar 

  83. Kim HW, Mozzarelli A, Sakai H, Jahr JS. Academia–industry collaboration in blood substitute development: issues, case histories and a proposal. Chemistry and biochemistry of oxygen therapeutics. In: Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 413–28.

    Chapter  Google Scholar 

  84. Kim HW, Jahr JS, Mozzarelli A, Sakai H. International consortium for development of hemoglobin-based oxygen carriers, oxygen therapeutics and multifunctional resuscitation fluids–a white paper. In: Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 737–46.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Jahr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahr, J.S., Roghani, K., Buqa, Y., Rojhani, A., Jhita, P., Kim, H.W. (2022). Hemoglobin-Based Oxygen Carriers: Brief History, Pharmacology and Design Strategies, Review of the Major Products in Clinical Trials, On-Going Studies, and Coagulation Concerns. In: Liu, H., Kaye, A.D., Jahr, J.S. (eds) Blood Substitutes and Oxygen Biotherapeutics. Springer, Cham. https://doi.org/10.1007/978-3-030-95975-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95975-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95974-6

  • Online ISBN: 978-3-030-95975-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics