Skip to main content

Polytrauma and Multiple Organ Dysfunction

  • Chapter
  • First Online:
Textbook of Polytrauma Management

Abstract

Multiple organ dysfunction (MOD) is the manifestation of an excessive, dysregulated immune-inflammatory response directed by a genomic storm induced by serious injury and/or infection. More specifically, MOD is the result of dysregulated immune and inflammatory responses driven by both the innate and adaptive immune systems and the inadequate endogenous responses that aim to restore homeostasis. The syndrome phenotypes represent a spectrum of degree of dysfunction (e.g., severe and multiple organ systems involved versus mild and a single organ system involved) and timing (e.g., early and rapidly progressive to death versus late and prolonged). Improvements in injury prevention and control, trauma system enhancements, and surgical and critical care delivery have reduced the incidence and overall severity of MOD. However, these advances have not markedly changed the high mortality rate associated with severe MOD from extensive polytrauma. Most interventions designed to treat MOD have not proven efficacious and therapy consists largely one of organ function support until resolution occurs. Therefore, prevention remains paramount. In addition, the impacts of MOD on survivors, while incompletely understood, affects all domains of recovery, including physical and mental functioning, independence and community integration, and the ability to return to work or school. This chapter provides an overview of MOD, highlights key pathophysiological features, provides an update on opportunities to prevent or treat MOD, and describes how healthcare systems can measure their performance in the prevention and care of MOD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eiseman B, Beart R, Norton L. Multiple organ failure. Surg Gynecol Obstet. 1977;144(3):323–6.

    CAS  PubMed  Google Scholar 

  2. Marshall JC. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 2001;29(7 Suppl):S99–106.

    Article  CAS  PubMed  Google Scholar 

  3. Sauaia A, et al. Validation of postinjury multiple organ failure scores. Shock. 2009;31(5):438–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sauaia A, Moore FA, Moore EE. Postinjury inflammation and organ dysfunction. Crit Care Clin. 2017;33(1):167–91.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marshall JC, et al. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23(10):1638–52.

    Article  CAS  PubMed  Google Scholar 

  6. Frohlich M, et al. Which score should be used for posttraumatic multiple organ failure? - comparison of the MODS, Denver- and SOFA-Scores. Scand J Trauma Resusc Emerg Med. 2016;24(1):130.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baue AE. MOF, MODS, and SIRS: what is in a name or an acronym? Shock. 2006;26(5):438–49.

    Article  CAS  PubMed  Google Scholar 

  8. Zygun D, et al. SOFA is superior to MOD score for the determination of non-neurologic organ dysfunction in patients with severe traumatic brain injury: a cohort study. Crit Care. 2006;10(4):R115.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cuschieri J, et al. Benchmarking outcomes in the critically injured trauma patient and the effect of implementing standard operating procedures. Ann Surg. 2012;255(5):993–9.

    Article  PubMed  Google Scholar 

  10. Sauaia A, et al. Temporal trends of postinjury multiple-organ failure: still resource intensive, morbid, and lethal. J Trauma Acute Care Surg. 2014;76(3):582–92, discussion 592–3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Benns M, et al. Benchmarking the incidence of organ failure after injury at trauma centers and nontrauma centers in the United States. J Trauma Acute Care Surg. 2013;75(3):426–31.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Minei JP, et al. The changing pattern and implications of multiple organ failure after blunt injury with hemorrhagic shock. Crit Care Med. 2012;40(4):1129–35.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dewar DC, et al. Changes in the epidemiology and prediction of multiple-organ failure after injury. J Trauma Acute Care Surg. 2013;74(3):774–9.

    Article  PubMed  Google Scholar 

  14. Frohlich M, et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg. 2014;76(4):921–7; discussion 927–8.

    Article  PubMed  Google Scholar 

  15. Baez AA. Development of multiple organ dysfunction syndrome in older and young adult trauma patients. Int J Crit Illn Inj Sci. 2019;9(1):21–4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ciesla DJ, et al. Decreased progression of postinjury lung dysfunction to the acute respiratory distress syndrome and multiple organ failure. Surgery. 2006;140(4):640–7; discussion 647–8.

    Article  PubMed  Google Scholar 

  17. Davidson GH, et al. Long-term survival of adult trauma patients. JAMA. 2011;305(10):1001–7.

    Article  CAS  PubMed  Google Scholar 

  18. Vanzant EL, et al. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J Trauma Acute Care Surg. 2014;76(1):21–9; discussion 29–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gentile LF, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ulvik A, et al. Multiple organ failure after trauma affects even long-term survival and functional status. Crit Care. 2007;11(5):R95.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rosenthal MD, Moore FA. Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): a new phenotype of multiple organ failure. J Adv Nutr Hum Metab. 2015;1(1):e784.

    PubMed  PubMed Central  Google Scholar 

  22. Cole E, et al. Multiple organ dysfunction after trauma. Br J Surg. 2020;107(4):402–12.

    Article  CAS  PubMed  Google Scholar 

  23. Dasta JF, et al. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit Care Med. 2005;33(6):1266–71.

    Article  PubMed  Google Scholar 

  24. Gunst M, et al. Changing epidemiology of trauma deaths leads to a bimodal distribution. Proc (Bayl Univ Med Cent). 2010;23(4):349–54.

    Google Scholar 

  25. Pfeifer R, et al. Mortality patterns in patients with multiple trauma: a systematic review of autopsy studies. PLoS One. 2016;11(2):e0148844.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tisherman SA, et al. Detailed description of all deaths in both the shock and traumatic brain injury hypertonic saline trials of the Resuscitation Outcomes Consortium. Ann Surg. 2015;261(3):586–90.

    Article  PubMed  Google Scholar 

  27. Moore FA, Moore EE. Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin North Am. 1995;75(2):257–77.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao W, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hawkins RB, et al. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome. Front Immunol. 2018;9:1511.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bortolotti P, Faure E, Kipnis E. Inflammasomes in tissue damages and immune disorders after trauma. Front Immunol. 2018;9:1900.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hwang PF, et al. Trauma is danger. J Transl Med. 2011;9:92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang Q, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grazioli S, Pugin J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol. 2018;9:832.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu T, et al. High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics. 2006;5(10):1899–913.

    Article  CAS  PubMed  Google Scholar 

  35. Lee SK, Ding JL. A perspective on the role of extracellular hemoglobin on the innate immune system. DNA Cell Biol. 2013;32(2):36–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sood RF, et al. Early leukocyte gene expression associated with age, burn size, and inhalation injury in severely burned adults. J Trauma Acute Care Surg. 2016;80(2):250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tompkins RG. Genomics of injury: the Glue Grant experience. J Trauma Acute Care Surg. 2015;78(4):671–86.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chakraborty S, Karasu E, Huber-Lang M. Complement after trauma: suturing innate and adaptive immunity. Front Immunol. 2018;9:2050.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kenawy HI, Boral I, Bevington A. Complement-coagulation cross-talk: a potential mediator of the physiological activation of complement by low pH. Front Immunol. 2015;6:215.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gerard C. Complement C5a in the sepsis syndrome—too much of a good thing? N Engl J Med. 2003;348(2):167–9.

    Article  CAS  PubMed  Google Scholar 

  41. Burk AM, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37(4):348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li Y, et al. Early complementopathy predicts the outcomes of patients with trauma. Trauma Surg Acute Care Open. 2019;4(1):e000217.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Parry J, et al. Soluble terminal complement activation fragment sC5b-9: a new serum biomarker for traumatic brain injury? Eur J Trauma Emerg Surg. 2021;47(5):1491–7.

    Article  PubMed  Google Scholar 

  44. Mortaz E, et al. Does neutrophil phenotype predict the survival of trauma patients? Front Immunol. 2019;10:2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adams JM, et al. Early trauma polymorphonuclear neutrophil responses to chemokines are associated with development of sepsis, pneumonia, and organ failure. J Trauma. 2001;51(3):452–6; discussion 456–7.

    CAS  PubMed  Google Scholar 

  46. Botha AJ, et al. Postinjury neutrophil priming and activation states: therapeutic challenges. Shock. 1995;3(3):157–66.

    Article  CAS  PubMed  Google Scholar 

  47. Pallister I. Current concepts of the inflammatory response after major trauma: an update. Injury. 2005;36(1):227–9; author reply 229–30

    Article  PubMed  Google Scholar 

  48. Giacalone VD, et al. Neutrophil adaptations upon recruitment to the lung: new concepts and implications for homeostasis and disease. Int J Mol Sci. 2020;21(3):851.

    Article  CAS  PubMed Central  Google Scholar 

  49. Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012;198(5):773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaibhav K, et al. Neutrophil extracellular traps exacerbate neurological deficits after traumatic brain injury. Sci Adv. 2020;6(22):eaax8847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bulger EM, et al. Hypertonic resuscitation modulates the inflammatory response in patients with traumatic hemorrhagic shock. Ann Surg. 2007;245(4):635–41.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Carcillo JA, et al. Pathophysiology of pediatric multiple organ dysfunction syndrome. Pediatr Crit Care Med. 2017;18(3_Suppl):S32–45.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Christoffersson G, Phillipson M. The neutrophil: one cell on many missions or many cells with different agendas? Cell Tissue Res. 2018;371(3):415–23.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Harr JN, et al. Isoflurane prevents acute lung injury through ADP-mediated platelet inhibition. Surgery. 2012;152(2):270–6.

    Article  PubMed  Google Scholar 

  55. Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest. 2006;116(12):3211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harr JN, et al. Antiplatelet therapy is associated with decreased transfusion-associated risk of lung dysfunction, multiple organ failure, and mortality in trauma patients. Crit Care Med. 2013;41(2):399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boyle AJ, et al. Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: a prospective analysis. Crit Care. 2015;19:109.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nydam TL, et al. Refractory postinjury thrombocytopenia is associated with multiple organ failure and adverse outcomes. J Trauma. 2011;70(2):401–6; discussion 406–7.

    PubMed  Google Scholar 

  59. Kor DJ, et al. Effect of aspirin on development of ARDS in at-risk patients presenting to the emergency department: the LIPS-A randomized clinical trial. JAMA. 2016;315(22):2406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jastrow KM III, et al. Early cytokine production risk stratifies trauma patients for multiple organ failure. J Am Coll Surg. 2009;209(3):320–31.

    Article  PubMed  Google Scholar 

  61. Bogner V, et al. Very early posttraumatic serum alterations are significantly associated to initial massive RBC substitution, injury severity, multiple organ failure and adverse clinical outcome in multiple injured patients. Eur J Med Res. 2009;14(7):284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maier B, et al. Early versus late onset of multiple organ failure is associated with differing patterns of plasma cytokine biomarker expression and outcome after severe trauma. Shock. 2007;28(6):668–74.

    Article  CAS  PubMed  Google Scholar 

  63. Kuwabara T, et al. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediat Inflamm. 2017;2017:3908061.

    Article  Google Scholar 

  64. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10(7):479–89.

    Article  CAS  PubMed  Google Scholar 

  65. Ge Y, Huang M, Yao YM. Biology of interleukin-17 and its pathophysiological significance in sepsis. Front Immunol. 2020;11:1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dickson RP. The microbiome and critical illness. Lancet Respir Med. 2016;4(1):59–72.

    Article  PubMed  Google Scholar 

  67. Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32(2):203–12.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Osuka A, et al. Prognostic impact of fecal pH in critically ill patients. Crit Care. 2012;16(4):R119.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shimizu K, et al. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig Dis Sci. 2011;56(4):1171–7.

    Article  PubMed  Google Scholar 

  70. Guzel M, et al. Value of the serum I-FABP level for diagnosing acute mesenteric ischemia. Surg Today. 2014;44(11):2072–6.

    Article  CAS  PubMed  Google Scholar 

  71. Piton G, et al. Catecholamine use is associated with enterocyte damage in critically ill patients. Shock. 2015;43(5):437–42.

    Article  CAS  PubMed  Google Scholar 

  72. Piton G, et al. Enterocyte damage in critically ill patients is associated with shock condition and 28-day mortality. Crit Care Med. 2013;41(9):2169–76.

    Article  PubMed  Google Scholar 

  73. Urner M, et al. Effects of blood products on inflammatory response in endothelial cells in vitro. PLoS One. 2012;7(3):e33403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Balvers K, et al. Risk factors for trauma-induced coagulopathy- and transfusion-associated multiple organ failure in severely injured trauma patients. Front Med (Lausanne). 2015;2:24.

    Google Scholar 

  75. Zallen G, et al. Stored red blood cells selectively activate human neutrophils to release IL-8 and secretory PLA2. Shock. 2000;13(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  76. Singer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Crouser ED, Matthay MA. Endothelial damage during septic shock: significance and implications for future therapies. Chest. 2017;152(1):1–3.

    Article  PubMed  Google Scholar 

  78. Mehta S, Gill SE. Improving clinical outcomes in sepsis and multiple organ dysfunction through precision medicine. J Thorac Dis. 2019;11(1):21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tuttle MS, et al. Safety and efficacy of damage control external fixation versus early definitive stabilization for femoral shaft fractures in the multiple-injured patient. J Trauma. 2009;67(3):602–5.

    PubMed  Google Scholar 

  80. Guerado E, et al. Damage control orthopaedics: state of the art. World J Orthop. 2019;10(1):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lackner I, et al. Complement activation and organ damage after trauma-differential immune response based on surgical treatment strategy. Front Immunol. 2020;11:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lackner I, et al. Reaming of femoral fractures with different reaming irrigator aspirator systems shows distinct effects on cardiac function after experimental polytrauma. J Orthop Res. 2020;38(12):2608–18.

    Article  PubMed  Google Scholar 

  83. Almahmoud K, et al. Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries. PLoS One. 2019;14(6):e0217577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Namas RA, et al. Individual-specific principal component analysis of circulating inflammatory mediators predicts early organ dysfunction in trauma patients. J Crit Care. 2016;36:146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pape HC, et al. Impact of intramedullary instrumentation versus damage control for femoral fractures on immunoinflammatory parameters: prospective randomized analysis by the EPOFF Study Group. J Trauma. 2003;55(1):7–13.

    Article  PubMed  Google Scholar 

  86. Harwood PJ, et al. Alterations in the systemic inflammatory response after early total care and damage control procedures for femoral shaft fracture in severely injured patients. J Trauma. 2005;58(3):446–52; discussion 452–4.

    Article  PubMed  Google Scholar 

  87. Nahm NJ, Vallier HA. Timing of definitive treatment of femoral shaft fractures in patients with multiple injuries: a systematic review of randomized and nonrandomized trials. J Trauma Acute Care Surg. 2012;73(5):1046–63.

    Article  PubMed  Google Scholar 

  88. Pfeifer R, et al. Indications and interventions of damage control orthopedic surgeries: an expert opinion survey. Eur J Trauma Emerg Surg. 2021;47(6):2081–92.

    Article  PubMed  Google Scholar 

  89. Rosenthal MD, Moore FA. Persistent inflammation, immunosuppression, and catabolism: evolution of multiple organ dysfunction. Surg Infect. 2016;17(2):167–72.

    Article  Google Scholar 

  90. Probst C, et al. 30 years of polytrauma care: an analysis of the change in strategies and results of 4849 cases treated at a single institution. Injury. 2009;40(1):77–83.

    Article  PubMed  Google Scholar 

  91. Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018;19(4):327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cutts S, et al. History of acute respiratory distress syndrome. Lancet Respir Med. 2016;4(7):547–8.

    Article  PubMed  Google Scholar 

  93. Cotton BA, et al. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006;26(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  94. Rodas EB, et al. Hyperacute abdominal compartment syndrome: an unrecognized complication of massive intraoperative resuscitation for extra-abdominal injuries. Am Surg. 2005;71(11):977–81.

    Article  PubMed  Google Scholar 

  95. Schreiber MA, et al. Early predictors of massive transfusion in combat casualties. J Am Coll Surg. 2007;205(4):541–5.

    Article  PubMed  Google Scholar 

  96. Balogh Z, et al. Secondary abdominal compartment syndrome is an elusive early complication of traumatic shock resuscitation. Am J Surg. 2002;184(6):538–43; discussion 543–4.

    Article  PubMed  Google Scholar 

  97. Duchesne JC, et al. Damage control immunoregulation: is there a role for low-volume hypertonic saline resuscitation in patients managed with damage control surgery? Am Surg. 2012;78(9):962–8.

    Article  PubMed  Google Scholar 

  98. Bulger EM, et al. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA. 2010;304(13):1455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bulger EM, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41.

    Article  PubMed  Google Scholar 

  100. Delano MJ, et al. Prehospital resuscitation of traumatic hemorrhagic shock with hypertonic solutions worsens hypocoagulation and hyperfibrinolysis. Shock. 2015;44(1):25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Holcomb JB. Damage control resuscitation. J Trauma. 2007;62(6 Suppl):S36–7.

    PubMed  Google Scholar 

  102. Butler FK Jr. Fluid resuscitation in tactical combat casualty care: yesterday and today. Wilderness Environ Med. 2017;28(2S):S74–81.

    Article  PubMed  Google Scholar 

  103. Holcomb JB, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148(2):127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Holcomb JB, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Holst LB, et al. Restrictive versus liberal transfusion strategy for red blood cell transfusion: systematic review of randomised trials with meta-analysis and trial sequential analysis. BMJ. 2015;350:h1354.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Palmieri TL, et al. Transfusion Requirement in Burn Care Evaluation (TRIBE): a multicenter randomized prospective trial of blood transfusion in major burn injury. Ann Surg. 2017;266(4):595–602.

    Article  PubMed  Google Scholar 

  107. Ciesla DJ, et al. A 12-year prospective study of postinjury multiple organ failure: has anything changed? Arch Surg. 2005;140(5):432–8; discussion 438–40.

    Article  PubMed  Google Scholar 

  108. Michetti CP, et al. Reducing transfusions in critically injured patients using a restricted-criteria order set. J Trauma Acute Care Surg. 2016;81(5):889–96.

    Article  CAS  PubMed  Google Scholar 

  109. Kim Y, et al. Role of leukoreduction of packed red blood cell units in trauma patients: a review. Int J Hematol Res. 2016;2(2):124–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mirski MA, et al. Restrictive and liberal red cell transfusion strategies in adult patients: reconciling clinical data with best practice. Crit Care. 2015;19:202.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Petrucci N, De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;(2):CD003844.

    Google Scholar 

  112. Chung CK, et al. Experience with an enteral-based nutritional support regimen in critically ill trauma patients. J Am Coll Surg. 2013;217(6):1108–17.

    Article  PubMed  Google Scholar 

  113. Kang W, et al. Parenteral nutrition impairs gut-associated lymphoid tissue and mucosal immunity by reducing lymphotoxin Beta receptor expression. Ann Surg. 2006;244(3):392–9.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mehta NM, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706–42.

    Article  PubMed  Google Scholar 

  115. O’Keefe GE, et al. Increasing enteral protein intake in critically ill trauma and surgical patients. Nutr Clin Pract. 2019;34(5):751–9.

    Article  PubMed  Google Scholar 

  116. Manzanares W, et al. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care. 2016;19:262.

    Article  PubMed  Google Scholar 

  117. McCarthy MS, Martindale RG. Immunonutrition in critical illness: what is the role? Nutr Clin Pract. 2018;33(3):348–58.

    Article  PubMed  Google Scholar 

  118. Mazaki T, Ishii Y, Murai I. Immunoenhancing enteral and parenteral nutrition for gastrointestinal surgery: a multiple-treatments meta-analysis. Ann Surg. 2015;261(4):662–9.

    Article  PubMed  Google Scholar 

  119. Goverman J, et al. The National Institute on Disability, Independent Living, and Rehabilitation Research Burn Model System: twenty years of contributions to clinical service and research. J Burn Care Res. 2017;38(1):e240–53.

    Article  PubMed  Google Scholar 

  120. Haider AH, et al. Factors associated with long-term outcomes after injury: results of the functional outcomes and recovery after trauma emergencies (FORTE) multicenter cohort study. Ann Surg. 2020;271(6):1165–73.

    Article  PubMed  Google Scholar 

  121. Chin TL, et al. Trends 10 years after burn injury: a Burn Model System National Database study. Burns. 2018;44(8):1882–6.

    Article  PubMed  Google Scholar 

  122. Amtmann D, et al. Psychometric properties of the satisfaction with life scale in people with traumatic brain, spinal cord, or burn injury: a National Institute on Disability, Independent Living, and Rehabilitation Research Model System Study. Assessment. 2017;2017:1073191117693921.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barclay T. Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, B.T., Maier, R.V. (2022). Polytrauma and Multiple Organ Dysfunction. In: Pape, HC., Borrelli Jr., J., Moore, E.E., Pfeifer, R., Stahel, P.F. (eds) Textbook of Polytrauma Management . Springer, Cham. https://doi.org/10.1007/978-3-030-95906-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95906-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95905-0

  • Online ISBN: 978-3-030-95906-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics