Skip to main content

Advertisement

Log in

Restrictive and liberal red cell transfusion strategies in adult patients: reconciling clinical data with best practice

  • Review
  • Published:
Critical Care Aims and scope Submit manuscript

Abstract

Red blood cell (RBC) transfusion guidelines correctly promote a general restrictive transfusion approach for anemic hospitalized patients. Such recommendations have been derived from evaluation of specific patient populations, and it is important to recognize that engaging a strict guideline approach has the potential to incur harm if the clinician fails to provide a comprehensive review of the patient’s physiological status in determining the benefit and risks of transfusion. We reviewed the data in support of a restrictive or a more liberal RBC transfusion practice, and examined the quality of the datasets and manner of their interpretation to provide better context by which a physician can make a sound decision regarding RBC transfusion therapy. Reviewed studies included PubMed-cited (1974 to 2013) prospective randomized clinical trials, prospective subset analyses of randomized studies, nonrandomized controlled trials, observational case series, consecutive and nonconsecutive case series, and review articles. Prospective randomized clinical trials were acknowledged and emphasized as the best-quality evidence. The results of the analysis support that restrictive RBC transfusion practices appear safe in the hospitalized populations studied, although patients with acute coronary syndromes, traumatic brain injury and patients at risk for brain or spinal cord ischemia were not well represented in the reviewed studies. The lack of quality data regarding the purported adverse effects of RBC transfusion at best suggests that restrictive strategies are no worse than liberal strategies under the studied protocol conditions, and RBC transfusion therapy in the majority of instances represents a marker for greater severity of illness. The conclusion is that in the majority of clinical settings a restrictive RBC transfusion strategy is cost-effective, reduces the risk of adverse events specific to transfusion, and introduces no harm. In anemic patients with ongoing hemorrhage, with risk of significant bleeding, or with concurrent ischemic brain, spinal cord, or myocardium, the optimal hemoglobin transfusion trigger remains unknown. Broad-based adherence to guideline approaches of therapy must respect the individual patient condition as interpreted by comprehensive clinical review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CI:

confidence interval

FOCUS:

Functional Outcomes in Cardiovascular Patients Undergoing Surgical Hip Fracture Repair

Hb:

hemoglobin

PCI:

percutaneous coronary intervention

RBC:

red blood cell

RCT:

randomized clinical trial

TACO:

transfusion-associated circulatory overload

TRICC:

Transfusion Requirements in Critical Care

References

  1. Carson JL, Grossman BJ, Kleinman S, Tinmouth AT, Marques MB, Fung MK, et al. Red blood cell transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2012;157:49–58.

    Article  PubMed  Google Scholar 

  2. Murphy DJ, Needham DM, Netzer G, Zeger SL, Colantuoni E, Ness P, et al. RBC transfusion practices among critically ill patients: has evidence changed practice? Crit Care Med. 2013;41:2344–53.

    Article  PubMed  Google Scholar 

  3. Hébert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340:409–17.

    Article  PubMed  Google Scholar 

  4. Bracey AW, Radovancevic R, Riggs SA, Houston S, Cozart H, Vaughn WK, et al. Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: effect on patient outcome. Transfusion. 1999;39:1070–7.

    Article  CAS  PubMed  Google Scholar 

  5. Hajjar LA, Vincent JL, Galas FR, Nakamura RE, Silva CM, Santos MH, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304:1559–67.

    Article  CAS  PubMed  Google Scholar 

  6. Cooper HA, Rao SV, Greenberg MD, Rumsey MP, McKenzie M, Alcorn KW, et al. Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study). Am J Cardiol. 2011;108:1108–11.

    Article  PubMed  Google Scholar 

  7. Carson JL, Terrin ML, Noveck H, Sanders DW, Chaitman BR, Rhoads GG, et al. Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med. 2011;365:2453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371:1381–91.

    Article  PubMed  CAS  Google Scholar 

  9. Villanueva C, Colomo A, Bosch A, Concepción M, Hernandez-Gea V, Aracil C, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368:11–21.

    Article  CAS  PubMed  Google Scholar 

  10. Carlson AP, Schermer CR, Lu SW. Retrospective evaluation of anemia and transfusion in traumatic brain injury. J Trauma. 2006;61:567–71.

    Article  PubMed  Google Scholar 

  11. Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Abraham E, et al. The CRIT Study: anemia and blood transfusion in the critically ill – current clinical practice in the United States. Crit Care Med. 2004;32:39–52.

    Article  PubMed  Google Scholar 

  12. Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs L, Webb A, et al. Anemia and blood transfusion in critically ill patients. JAMA. 2002;288:1499–507.

    Article  PubMed  Google Scholar 

  13. Taylor RW, Manganaro L, O'Brien J, Trottier SJ, Parkar N, Veremakis C. Impact of allogenic packed red blood cell transfusion on nosocomial infection rates in the critically ill patient. Crit Care Med. 2002;30:2249–54.

    Article  PubMed  Google Scholar 

  14. Brand A. Immunological aspects of blood transfusions. Blood Rev. 2000;14:130–44.

    Article  CAS  PubMed  Google Scholar 

  15. Mynster T, Christensen IJ, Moesgaard F, Nielsen HJ. Effects of the combination of blood transfusion and postoperative infectious complications on prognosis after surgery for colorectal cancer. Danish RANX05 Colorectal Cancer Study Group. Br J Surg. 2000;87:1553–62.

    CAS  PubMed  Google Scholar 

  16. Rachoin JS, Daher R, Schorr C, Milcarek B, Parrillo JE, Gerber DR. Microbiology, time course and clinical characteristics of infection in critically ill patients receiving packed red blood cell transfusion. Vox Sang. 2009;97:294–302.

    Article  PubMed  Google Scholar 

  17. Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. Crit Care Med. 2008;36:2667–74.

    Article  PubMed  Google Scholar 

  18. Lebrón Gallardo M, Herrera Gutierrez ME, Seller Pérez G, Curiel Balsera E, Fernández Ortega JF, Quesada GG. Risk factors for renal dysfunction in the postoperative course of liver transplant. Liver Transpl. 2004;10:1379–85.

    Article  PubMed  Google Scholar 

  19. LaPar DJ, Crosby IK, Ailawadi G, Ad N, Choi E, Spiess BD, et al. Blood product conservation is associated with improved outcomes and reduced costs after cardiac surgery. J Thorac Cardiovasc Surg. 2013;145:796–803.

    Article  PubMed  Google Scholar 

  20. Rao SV, Jollis JG, Harrington RA, Granger CB, Newby LK, Armstrong PW, et al. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA. 2004;292:1555–62.

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Alexander KP, Chen AY, Roe MT, Brindis RG, Rao SV, et al. The implications of blood transfusions for patients with non-ST-segment elevation acute coronary syndromes: results from the CRUSADE National Quality Improvement Initiative. J Am Coll Cardiol. 2005;46:1490–5.

    Article  PubMed  Google Scholar 

  22. Smith MJ, Le Roux PD, Elliott JP, Winn HR. Blood transfusion and increased risk for vasospasm and poor outcome after subarachnoid hemorrhage. J Neurosurg. 2004;101:1–7.

    Article  PubMed  Google Scholar 

  23. Sherwood MW, Wang Y, Curtis JP, Peterson ED, Rao SV. Patterns and outcomes of red blood cell transfusion in patients undergoing percutaneous coronary intervention. JAMA. 2014;311:836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carson JL, Carless PA, Hebert PC. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev. 2012;4, CD002042.

    Google Scholar 

  25. Napolitano LM, Kurek S, Luchette FA, Anderson GL, Bard MR, Bromberg W, et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit Care Med. 2009;37:3124–67.

    Article  PubMed  Google Scholar 

  26. Practice guidelines for perioperative blood transfusion and adjuvant therapies. American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology. 2006;105:198–208.

    Article  Google Scholar 

  27. Retter A, Wyncoll D, Pearse R, Carson D, McKechnie S, Stanworth S, et al. Guidelines on the management of anaemia and red cell transfusion in adult critically ill patients. Br J Haematol. 2013;160:445–64.

    Article  CAS  PubMed  Google Scholar 

  28. Shander A, Hofmann A, Ozawa S, Theusinger OM, Gombotz H, Spahn DR. Activity-based costs of blood transfusions in surgical patients at four hospitals. Transfusion. 2010;50:753–65.

    Article  PubMed  Google Scholar 

  29. Doyle BJ, Rihal CS, Gastineau DA, Holmes Jr DR. Bleeding, blood transfusion, and increased mortality after percutaneous coronary intervention: implications for contemporary practice. J Am Coll Cardiol. 2009;53:2019–27.

    Article  PubMed  Google Scholar 

  30. Tsai HI, Chou AH, Yang MW. Perioperative transfusion-related acute lung injury: a retrospective analysis. Acta Anaesthesiol Taiwan. 2012;50:96–100.

    Article  PubMed  Google Scholar 

  31. Toy P, Gajic O, Bacchetti P, Looney MR, Gropper MA, Hubmayr R, et al. Transfusion-related acute lung injury: incidence and risk factors. Blood. 2012;119:1757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vlaar AP, Juffermans NP. Transfusion-related acute lung injury: a clinical review. Lancet. 2013;382:984–94.

    Article  PubMed  Google Scholar 

  33. McIntyre L, Hebert PC, Wells G, Fergusson D, Marshall J, Yetisir E, et al. Is a restrictive transfusion strategy safe for resuscitated and critically ill trauma patients? J Trauma. 2004;57:563–8.

    Article  PubMed  Google Scholar 

  34. Hébert PC, Yetisir E, Martin C, Blajchman MA, Wells G, Marshall J, et al. Is a low transfusion threshold safe in critically ill patients with cardiovascular diseases? Crit Care Med. 2001;29:227–34.

    Article  PubMed  Google Scholar 

  35. Park DW, Chun BC, Kwon SS, Yoon YK, Choi WS, Sohn JW, et al. Red blood cell transfusions are associated with lower mortality in patients with severe sepsis and septic shock: a propensity-matched analysis. Crit Care Med. 2012;40:3140–5.

    Article  PubMed  Google Scholar 

  36. Vincent JL, Sakr Y, Sprung C, Harboe S, Damas P. Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators. Are blood transfusions associated with greater mortality rates? Results of the Sepsis Occurrence in Acutely Ill Patients study. Anesthesiology. 2008;108:31–9.

    Article  PubMed  Google Scholar 

  37. Pidcoke HF, Aden JK, Mora AG, Borgman MA, Spinella PC, Dubick MA, et al. Ten-year analysis of transfusion in Operation Iraqi Freedom and Operation Enduring Freedom: increased plasma and platelet use correlates with improved survival. J Trauma Acute Care Surg. 2012;73:S445–52.

    Article  PubMed  Google Scholar 

  38. Brown JB, Cohen MJ, Minei JP, Maier RV, West MA, Billiar TR, et al. Debunking the survival bias myth: characterization of mortality during the initial 24 hours for patients requiring massive transfusion. J Trauma Acute Care Surg. 2012;73:358–64.

    Article  PubMed  Google Scholar 

  39. Halmin M, Boström F, Brattström O, Lundahl J, Wikman A, Östlund A, et al. Effect of plasma-to-RBC ratios in trauma patients: a cohort study with time-dependent data. Crit Care Med. 2013;41:1905–14.

    Article  PubMed  Google Scholar 

  40. Sambasivan CN, Kunio NR, Nair PV, Zink KA, Michalek JE, Holcomb JB, et al. High ratios of plasma and platelets to packed red blood cells do not affect mortality in nonmassively transfused patients. J Trauma. 2011;71:S329–36.

    PubMed  Google Scholar 

  41. Inaba K, Branco BC, Rhee P, Blackbourne LH, Holcomb JB, Teixeira PGR, et al. Impact of plasma transfusion in trauma patients who do not require massive transfusion. J Am Coll Surg. 2010;210:957–65.

    Article  PubMed  Google Scholar 

  42. Edens JW, Chung KK, Pamplin JC, Allan PF, Jones JA, King BT, et al. Predictors of early acute lung injury at a combat support hospital: a prospective observational study. J Trauma. 2010;69:S81–6.

    PubMed  Google Scholar 

  43. Yang JC, Sun Y, Xu CX, Dang QL, Li L, Xu YG, et al. Correlation between red blood cell transfusion volume and mortality in patients with massive blood transfusion: a large multicenter retrospective study. Exp Ther Med. 2015;9:137–42.

    Article  PubMed  Google Scholar 

  44. Balducci L. Anemia, fatigue and aging. Transfus Clin Biol. 2010;17:375–81.

    Article  CAS  PubMed  Google Scholar 

  45. Terekeci HM, Kucukardali Y, Onem Y, Erikci AA, Kucukardali B, Sahan B, et al. Relationship between anaemia and cognitive functions in elderly people. Eur J Intern Med. 2010;21:87–90.

    Article  PubMed  Google Scholar 

  46. Chaves PH, Xue QL, Guralnik JM, Ferrucci L, Volpato S, Fried LP. What constitutes normal hemoglobin concentration in community dwelling disabled older women? J Am Ger Soc. 2004;52:1811–6.

    Article  Google Scholar 

  47. Penninx BW, Pahor M, Cesari M, Corsi AM, Woodman RC, Bandinelli S, et al. Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc. 2004;52:719–24.

    Article  PubMed  Google Scholar 

  48. Foss NB, Kristensen MT, Kehlet H. Anaemia impedes functional mobility after hip fracture surgery. Age Ageing. 2008;37:173–8.

    Article  PubMed  Google Scholar 

  49. Hollman JH, Beckman BA, Brandt RA, Merriwether EN, Williams RT, Nordrum JT. Minimum detectable change in gait velocity during acute rehabilitation following hip fracture. J Geriatr Phys Ther. 2008;31:53–6.

    Article  PubMed  Google Scholar 

  50. Latham NK, Mehta V, Nguyen AM, Jette AM, Olarsch S, Papanicolaou D, et al. Performance-based or self-report measures of physical function: which should be used in clinical trials of hip fracture patients? Arch Phys Med Rehabil. 2008;89:2146–55.

    Article  PubMed  Google Scholar 

  51. Neal MD, Hoffman MK, Cuschieri J, Minei JP, Maier RV, Harbrecht BG, et al. Crystalloid to packed red blood cell transfusion ratio in the massively transfused patient: when a little goes a long way. J Trauma Acute Care Surg. 2012;72:892–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Reinhart K, Perner A, Sprung CL, Jaeschke R, Schortgen F, Johan Groeneveld AB, et al. Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients, European Society of Intensive Care Medicine. Intensive Care Med. 2012;38:368–83.

    Article  CAS  PubMed  Google Scholar 

  53. Cohen MJ. Towards hemostatic resuscitation: the changing understanding of acute traumatic biology, massive bleeding, and damage-control resuscitation. Surg Clin North Am. 2012;92:877–91.

    Article  PubMed  Google Scholar 

  54. Carson JL, Brooks MM, Abbott JD, Chaitman B, Kelsey SF, Triulzi DJ, et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J. 2013;165:964–71.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Diedler J, Sykora M, Hahn P, Heerlein K, Schölzke MN, Kellert L, et al. Low hemoglobin is associated with poor functional outcome after non-traumatic, supratentorial intracerebral hemorrhage. Crit Care. 2010;14:R63.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oddo M, Milby A, Chen I, Frangos S, MacMurtrie E, Maloney-Wilensky E, et al. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:1275–81.

    Article  CAS  PubMed  Google Scholar 

  57. Levy PS, Kim SJ, Eckel PK, Chavez R, Ismail EF, Gould SA, et al. Limit to cardiac compensation during acute isovolemic hemodilution: influence of coronary stenosis. Am J Physiol. 1993;265:H340–9.

    CAS  PubMed  Google Scholar 

  58. Chaplin Jr H, Beutler E, Collins JA, Giblett ER, Polesky HF. Current status of red-cell preservation and availability in relation to the developing national blood policy. N Engl J Med. 1974;291:68–74.

    Article  PubMed  Google Scholar 

  59. Marik P, Sibbald W. Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA. 1993;269:3024–9.

    Article  CAS  PubMed  Google Scholar 

  60. Weiskopf RB, Feiner J, Hopf H, Lieberman J, Finlay HE, Quah C, et al. Fresh blood and aged stored blood are equally efficacious in immediately reversing anemia-induced brain oxygenation deficits in humans. Anesthesiology. 2006;104:911–20.

    Article  PubMed  Google Scholar 

  61. Walsh T, McArdle F, McLellan SA, Maciver C, Maginnis M, Prescott RJ, et al. Does the storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients? Crit Care Med. 2004;32:364–71.

    Article  PubMed  Google Scholar 

  62. Roberson RS, Lockhart E, Shapiro NI, Bandarenko N, McMahon TJ, Massey MJ, et al. Impact of transfusion of autologous 7- versus 42-day-old AS-3 red blood cells on tissue oxygenation and the microcirculation in healthy volunteers. Transfusion. 2012;52:2459–64.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sabatine MS, Morrow DA, Giugliano RP, Burton PB, Murphy SA, McCabe CH, et al. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation. 2005;111:2042–9.

    Article  CAS  PubMed  Google Scholar 

  64. Rousseau M, Yan RT, Tan M, Lefkowitz CJ, Casanova A, Fitchett D, et al. Relation between hemoglobin level and recurrent myocardial ischemia in acute coronary syndromes detected by continuous electrocardiographic monitoring. Am J Cardiol. 2010;106:1417–22.

    Article  CAS  PubMed  Google Scholar 

  65. Zarroy O, Hoeks SE, Valentijn T, Leendertse-Verloop K, Van Klei WA, Jan Stolker R, et al. Postoperative hemoglobin levels and its association with myocardial ischemia in non-cardiac surgical patients. Minerva Anestesiol. 2014;80:204–10.

    CAS  PubMed  Google Scholar 

  66. Gutierrez A, Tsai TT, Stanislawski MA, Vidovich M, Bryson CL, Bhatt DL, et al. Adoption of transradial percutaneous coronary intervention and outcomes according to center radial volume in the Veterans Affairs Healthcare System: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking (CART) program. Circ Cardiovasc Interv. 2013;6:336–46.

    Article  PubMed  Google Scholar 

  67. Ergelen M, Uyarel H, Altay S, Ayhan E, Isik T, Bacaksiz A, et al. Prognostic impact of red blood cell transfusion in patients undergoing primary angioplasty for ST elevation myocardial infarction. Coron Artery Dis. 2012;23:517–22.

    Article  PubMed  Google Scholar 

  68. Mehran R, Pocock S, Nikolsky E, Dangas GD, Clayton T, Claessen BE, et al. Impact of bleeding on mortality after percutaneous coronary intervention results from a patient-level pooled analysis of the REPLACE-2 (randomized evaluation of PCI linking angiomax to reduced clinical events), ACUITY (acute catheterization and urgent intervention triage strategy), and HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trials. JACC Cardiovasc Interv. 2011;4:654–64.

    Article  PubMed  Google Scholar 

  69. Marso SP, Amin AP, House JA, Kennedy KF, Spertus JA, Rao SV, et al. Association between use of bleeding avoidance strategies and risk of periprocedural bleeding among patients undergoing percutaneous coronary intervention. JAMA. 2010;303:2156–64.

    Article  CAS  PubMed  Google Scholar 

  70. Prada-Delgado Ó, Estévez-Loureiro R, Calviño-Santos R, Barge-Caballero E, Salgado-Fernández J, Piñón-Esteban P, et al. Safety and efficacy of femoral vascular closure devices in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Am Heart J. 2011;161:1207–13.

    Article  PubMed  Google Scholar 

  71. Ndrepepa G, Berger PB, Mehilli J, Seyfarth M, Neumann FJ, Schömig A, et al. Periprocedural bleeding and 1-year outcome after percutaneous coronary interventions: appropriateness of including bleeding as a component of a quadruple end point. J Am Coll Cardiol. 2008;51:690–7.

    Article  PubMed  Google Scholar 

  72. Chase AJ, Fretz EB, Warburton WP, Klinke WP, Carere RG, Pi D, et al. Association of the arterial access site at angioplasty with transfusion and mortality: the M.O.R.T.A.L study (Mortality benefit Of Reduced Transfusion after percutaneous coronary intervention via the Arm or Leg). Heart. 2008;94:1019–25.

    Article  CAS  PubMed  Google Scholar 

  73. Kinnaird TD, Stabile E, Mintz GS, Lee CW, Canos DA, Gevorkian N, et al. Incidence, predictors, and prognostic implications of bleeding and blood transfusion following percutaneous coronary interventions. Am J Cardiol. 2003;92:930–5.

    Article  PubMed  Google Scholar 

  74. Doyle BJ, Ting HH, Bell MR, Lennon RJ, Mathew V, Singh M, et al. Major femoral bleeding complications after percutaneous coronary intervention: incidence, predictors, and impact on long-term survival among 17,901 patients treated at the Mayo Clinic from 1994 to 2005. JACC Cardiovasc Interv. 2008;1:202–9.

    Article  PubMed  Google Scholar 

  75. Correia LC, Souza AC, Sabino M, Brito M, Maraux M, Garcia G, et al. Hemoglobin level adds prognostic value to the global registry of acute coronary events score in non-ST elevation acute coronary syndromes. Cardiology. 2012;121:213–9.

    Article  CAS  PubMed  Google Scholar 

  76. Ennezat PV, Maréchaux S, Pinçon C, Finzi J, Barrailler S, Bouabdallaoui N, et al. Anaemia to predict outcome in patients with acute coronary syndromes. Arch Cardiovasc Dis. 2013;106:357–65.

    Article  PubMed  Google Scholar 

  77. Ang DS, Kao MP, Noman A, Lang CC, Struthers AD. The prognostic significance of early and late anaemia in acute coronary syndrome. QJM. 2012;105:445–54.

    Article  CAS  PubMed  Google Scholar 

  78. Anker SD, Voors A, Okonko D, Clark AL, James MK, von Haehling S, et al. Prevalence, incidence, and prognostic value of anaemia in patients after an acute myocardial infarction: data from the OPTIMAAL trial. Eur Heart J. 2009;30:1331–9.

    Article  PubMed  Google Scholar 

  79. Maréchaux S, Barrailler S, Pinçon C, Decourcelle V, Guidez T, Braun S, et al. Prognostic value of hemoglobin decline over the GRACE score in patients hospitalized for an acute coronary syndrome. Heart Vessels. 2012;27:119–27.

    Article  PubMed  Google Scholar 

  80. Mehran R, Baber U, Steg PG, Ariti C, Weisz G, Witzenbichler B, et al. Cessation of dual antiplatelet treatment and cardiac events after percutaneous coronary intervention (PARIS): 2 year results from a prospective observational study. Lancet. 2013;S0140-6736:61720–1.

    Google Scholar 

  81. Fox KA, Eagle KA, Gore JM, Steg PG, Anderson FA. GRACE and GRACE2 Investigators. The Global Registry of Acute Coronary Events, 1999 to 2009 – GRACE. Heart. 2010;96:1095–101.

    Article  CAS  PubMed  Google Scholar 

  82. Spencer FA, Moscucci M, Granger CB, Gore JM, Goldberg RJ, Steg PG, et al. Does comorbidity account for the excess mortality in patients with major bleeding in acute myocardial infarction? Circulation. 2007;116:2793–801.

    Article  PubMed  Google Scholar 

  83. Wendler O, Walther T, Nataf P, Rubino P, Schroefel H, Thielmann M, et al. Trans-apical aortic valve implantation: univariate and multivariate analyses of the early results from the SOURCE registry. Eur J Cardiothorac Surg. 2010;38:119–27.

    Article  PubMed  Google Scholar 

  84. Josephson CD, Glynn SA, Kleinman SH, Blajchman MA. State-of-the Science Symposium Transfusion Medicine Committee. A multidisciplinary ‘think tank’: the top 10 clinical trial opportunities in transfusion medicine from the National Heart, Lung, and Blood Institute-sponsored 2009 state-of-the-science symposium. Transfusion. 2011;51:828–41.

    Article  PubMed  Google Scholar 

  85. Deans KJ, Minneci PC, Klein HG, Natanson C. The relevance of practice misalignments to trials in transfusion medicine. Vox Sang. 2010;99:16–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek A Mirski.

Additional information

Competing interests

The authors declare that they have no competing interests.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirski, M.A., Frank, S.M., Kor, D.J. et al. Restrictive and liberal red cell transfusion strategies in adult patients: reconciling clinical data with best practice. Crit Care 19, 202 (2015). https://doi.org/10.1186/s13054-015-0912-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0912-y

Keywords

Navigation