Skip to main content

Electromyography

  • Chapter
  • First Online:
Intraoperative Monitoring

Abstract

Electromyography identifies muscle fiber depolarization and is an essential part of multimodal intraoperative neurophysiological monitoring. Recording electrodes may be placed on the skin surface, subdermally or intramuscularly, with each type of electrode having its advantages and limitations. Spontaneous electromyography (EMG) recordings detect mechanical stimulation of nerves that are at risk of injury during dissection. Stimulated EMG helps to locate neural structures in the surgical field. Stimulation probes may be monopolar, with a wider stimulation field, or bipolar which provides a greater specificity of stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EMG:

Electromyography

IOM:

Intraoperative neurophysiologic monitoring

SED:

Suprasegmentally induced EMG discharge

References

  1. Rand RW, Kurze TL. Facial nerve preservation by posterior fossa transmeatal microdissection in total removal of acoustic tumours. J Neurol Neurosurg Psychiatry. 1965;28(4):311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holland NR. Intraoperative electromyography. J Clin Neurophysiol. 2002;19(5):444–53.

    Article  PubMed  Google Scholar 

  3. Rubin DI. Needle electromyography: basic concepts. Handb Clin Neurol. 2019;160(3rd series):243–56.

    Article  PubMed  Google Scholar 

  4. Harper CM. Intraoperative cranial nerve monitoring. Muscle Nerve. 2004;29(3):339–51.

    Article  PubMed  Google Scholar 

  5. Nunes RR, Bersot CDA, Garritano JG. Intraoperative neurophysiological monitoring in neuroanesthesia. Curr Opin Anaesthesiol. 2018;31(5):532–8.

    Article  PubMed  Google Scholar 

  6. Mishler ET, Smith PG. Technical aspects of intraoperative monitoring of lower cranial nerve function. Skull Base Surg. 1995;5(4):245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franz A, Klaas J, Schumann M, Frankewitsch T, Filler TJ, Behringer M. Anatomical versus functional motor points of selected upper body muscles. Muscle Nerve. 2017;57(3):460–5.

    Article  PubMed  Google Scholar 

  8. Pearlman RC, Isley MR, Ruben GD, Sandler SC, Wiesbaum B, Ali Khan M, Greene BS, Charles V, Shah A. Intraoperative monitoring of the recurrent laryngeal nerve using acoustic, free-run, and evoked electromyography. J Clin Neurophysiol. 2005;22(2):148–52.

    Article  PubMed  Google Scholar 

  9. Crum BA, Strommen JA. Peripheral nerve stimulation and monitoring during operative procedures. Muscle Nerve. 2007;35(2):159–70.

    Article  PubMed  Google Scholar 

  10. Leppanen RE. Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19(6):437–61.

    Article  PubMed  Google Scholar 

  11. Romstock J, Strauss C, Fahlbusch. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg. 2000;93(4):586–93.

    Article  CAS  PubMed  Google Scholar 

  12. Julian FJ, Goldman DE. The effects of mechanical stimulation on some electrical properties of axons. J Gen Physiol. 1962;46(2):297–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prell J, Ramp S, Romstock J, Fahlbush R, Strauss C. Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J Neurosurg. 2007;106(5):826–32.

    Article  PubMed  Google Scholar 

  14. Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG. Real-time continuous intraopera tive electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine (Phila Pa 1976). 2004;29:677–84.

    Article  PubMed  Google Scholar 

  15. Minahan RE, et al. Basic neurophysiologic intraoperative monitoring techniques. In: Husain AM, editor. A practical approach to neurophysiologic intraoperative monitoring. New York, NY: Demos Medical Publishing; 2008. p. 21–30.

    Google Scholar 

  16. Skinner SA, Transfeldt EE, Mehbod AA, Mullan JC, Perra JH. Electromyography detects mechanically-induced suprasegmental spinal motor tract injury: review of decompression at spinal cord level. Clin Neurophysiol. 2009;120(4):754–64.

    Article  PubMed  Google Scholar 

  17. Clinical practice guidelines for intraoperative neurophysiological monitoring: 2020 update. Ann Clin Neurophysiol. 2021;23(1):35–45.

    Google Scholar 

  18. Holland NR, Lukaczyk TA, Riley LH 3rd, Kostuik JP. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine. 1998;23(2):224–7.

    Article  CAS  PubMed  Google Scholar 

  19. Mandpe AH, Mikulec A, Jackler RK, Pitts LH, Yingling CD. Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection. Am J Otol. 1998;19(1):112–7.

    CAS  PubMed  Google Scholar 

  20. Lall RR, Lall RR, Hauptman JS, Munoz C, Cybulski GR, Koski T, Ganju A, Fessler RG, Smith ZA. Intraoperative neurophysiological monitoring in spine surgery: indications, efficacy, and role of the preoperative checklist. Neurosurg Focus. 2012;33(5):E10.

    Article  PubMed  Google Scholar 

  21. Calancie B, Madsen P, Lebwohl N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine. 1994;19(24):2780–6.

    Article  CAS  PubMed  Google Scholar 

  22. Kartush JM, Niparko JK, Bledsoe SC, Graham MD, Kemink JL. Intraoperative facial nerve monitoring: a comparison of stimulating electrodes. Laryngoscope. 1985;95(12):1536–40.

    Article  CAS  PubMed  Google Scholar 

  23. Moller AR, Jannetta PJ. Preservation of facial function during removal of acoustic neuromas: use of monopoly constant voltage stimulation and EMG. J Neurosurg. 1984;61(4):757–60.

    Article  CAS  PubMed  Google Scholar 

  24. Schucht P, Seidel K, Jilch A, Beck J, Raabe A. A review of monopolar motor mapping and a comprehensive guide to continuous dynamic motor mapping for resection of motor eloquent brain tumors. Neurochirurgie. 2017;63(3):175–80.

    Article  CAS  PubMed  Google Scholar 

  25. Schekutiev G, Schmid U. Coaxial insulated bipolar electrode for monopolar and bipolar mapping of neural tissue: technical note with emphasis on the principles of intra-operative stimulation. Acta Neurochir. 1996;138(4):470–4.

    Article  CAS  PubMed  Google Scholar 

  26. Szelényi A, Senft C, Jardan M, Forster MT, Franz K, Seifert V, Vatter H. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol. 2011;122(7):1470–5.

    Article  PubMed  Google Scholar 

  27. Wongsarnpigoon A, Grill WM. Computational modeling of epidural cortical stimulation. J Neural Eng. 2008;5(4):443–54.

    Article  PubMed  Google Scholar 

  28. Dumitru, et al. Instrumentation. In: Dumitru D, Amato AA, Zwarts MJ, editors. Electrodiagnostic medicine. 2nd ed. Philadelphia: Hanley & Belfus; 2002. p. 79–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Tellechea Rotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rotta, F.T., Marrone, C.D., Hoppe, A.M. (2022). Electromyography. In: Verst, S.M., Barros, M.R., Maldaun, M.V.C. (eds) Intraoperative Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-95730-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95730-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95729-2

  • Online ISBN: 978-3-030-95730-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics