Skip to main content

Palaeoenvironmental and Palaeontological Study of the Gabal Ekma Section (Egypt) Throughout the Coniacian-Santonian Boundary

  • Chapter
  • First Online:
The Phanerozoic Geology and Natural Resources of Egypt

Abstract

The Gabal Ekma section, located in the Sinai desert (Egypt), is characterised by shallow marine deposits of mixed siliciclastic/carbonate sediments of the Matulla Formation which includes the Coniacian and Santonian stages. The section exhibits significant accumulation of organic-rich intervals and phosphatic layers associated with fossiliferous vertebrate remains. The Coniacian-Santonian (CS) carbon isotopic patterns appear to be recognised in the Egyptian section and are used to characterise the interval of the CS oceanic anoxic event (OAE 3). However, this latest Cretaceous OAE appears not to be truly important on a global scale but was more dependent on local or regional conditions. These are mainly limited to shallow-water environments and epicontinental seas of the equatorial and South Atlantic basins and the Western Interior Seaway. Based on a weathering index and mineralogy, climate gradually evolved from warm and seasonal climate to arid conditions during the late Coniacian up to the base of the Santonian (Michel Dean Event). Then a significant change to more humid and tropical conditions is observed above the Michel Dean Event (early Santonian), which persisted up to the Buckle Event (base on the late Santonian), coinciding with the organic-rich shales deposits in deeper environments. Fluctuations in total phosphorus (Total-P) contents are clearly independent from detrital input but seem to be controlled by regional anoxia and phosphogenesis. Total-P contents are indeed depleted in the organic-rich interval, suggesting intense P regeneration due to anoxic conditions. This type of P regeneration may explain the formation of the bone bed located at the C-S boundary characterised by very well-preserved shark teeth and vertebra, associated with phosphatised nodules in a sandy phosphatic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Gawad, G. I., El Sheikh, H. A., Abdelhamid, M. A., El Beshtawy, M. K., Abed, M. M., Fürsich, F. T., & El Qot, G. M. (2004). Stratigraphic studies on some Upper Cretaceous successions in Sinai, Egypt. Egyptian Journal of Paleontology, 4, 263–303.

    Google Scholar 

  • Abdel-Gawad, G. I., El-Qot, G. M., & Mekawy, M. S. (2007). Macrobiostratigraphy of the Upper Cretaceous succession from Southern Galala, Eastern Desert, Egypt. In Proceedings of the Second International Conference on the Geology of Tethys (pp. 329–349). Cairo University, Cairo.

    Google Scholar 

  • Adatte, T., Stinnesbeck, W., & Keller, G. (1996). Lithostratigraphical and mineralogic correlations of near K/T boundary clastic sediments in northeastern Mexico: Implications for origin and nature of deposition. In G. Ryder, D. Fastovsky, & S. Gartner, (Eds.), The Cretaceous-Tertiary event and other catastrophes in earth history. Geological society of America special paper (Vol. 307, pp. 211–226).

    Google Scholar 

  • Arthur, M. A., Jenkyns, H. C., Brumsack, H. J., & Schlanger, S. O. (1990). Stratigraphy, geochemistry and paleoceanography of organic carbon-rich Cretaceous sequences. In R. N. Ginsburg, & B. Beaudoin (Eds.), Cretaceous resources, events and rhythms. NATO ASI series C (Vol. 304, pp. 75–119).

    Google Scholar 

  • Bartley, J. K., & Kah, L. C. (2004). Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology, 32, 129–132.

    Article  Google Scholar 

  • Bauer, J., Kuss, J., & Steuber, T. (2003). Sequence architecture and carbonate platform configuration (Late Cenomanian–Santonian), Sinai, Egypt. Sedimentology, 50, 387–414.

    Article  Google Scholar 

  • Davis, C., Pratt, L., Sliter, W., Mompart, L., & Murat, B. (1999). Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela. In E. Barrera & C. C. Johnson (Eds.), Evolution of the Cretaceous Ocean—Climate system. Geological society of America special paper (Vol. 332, pp. 203–230).

    Google Scholar 

  • Dean, W. E., & Arthur, M. A. (1998). Geochemical expression of cyclicity in Cretaceous pelagic limestone sequences: Niobrara Formation, Western Interior Seaway. In W. E. Dean, & M. A. Arthur (Eds.), Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, U.S.A. SEPM, Concepts in sedimentology and paleontology (Vol. 6, pp. 227–255).

    Google Scholar 

  • Eaton, A. D., Clesceri, L. S., & Greenberg, A. E. (1995). Standard methods for examination of water and waste water (Vol. IXI, pp. 4113–4114).

    Google Scholar 

  • El-Azabi, M. H., & El-Araby, A. (2007). Depositional framework and sequence stratigraphic aspects of the Coniacian-Santonian mixed siliciclastic/carbonate Matulla sediments in Nezzazat and Ekma blocks, Gulf of Suez, Egypt. Journal of African Earth Sciences, 47, 179–202.

    Article  Google Scholar 

  • El-Dawy, M. H. (1994). The Coniacian-Santonian boundary in Wadi El-Seih, west central Sinai, Egypt: Stratigraphy, foraminiferal fauna and sea level changes. Neues Jahrbuch für Geologie und Paläontologie, 192(2), 203–219.

    Google Scholar 

  • Erlich, R. N., Macsotay, O., Nederbragt, A. J., & Lorente, M. A. (1999). Palaeoceanography, palaeoecology, and depositional environments of Upper Cretaceous rocks of western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153, 203–238.

    Article  Google Scholar 

  • Farouk, S., Ahmad, F., Powell, J., & Marzouk, A. (2016). Integrated microfossil biostratigraphy, facies distribution and depositional sequences of the upper Turonian to Campanian succession in northeast Egypt and Jordan. Facies, 62, 8.

    Article  Google Scholar 

  • Fedo, C.M., Nesbitt, H.W., Young, G.M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Google Scholar 

  • Fedo, C. M., Young, G. M., & Nesbitt, G. M. (1997). Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A greenhouse to icehouse transition. Precambrian Research, 86, 201–223. https://doi.org/10.1016/S0301-9268(97)00049-1

    Article  Google Scholar 

  • Gertsch, B., Keller, G., Adatte, T., & Bartels, D. (2011). Trace-element geochemistry of Brazos sections, Texas, U.S.A. In G. Keller & T. Adatte (Eds.), End-Cretaceous mass extinction and Chicxulub impact in Texas (Vol. 100, pp. 251–280). SEPM Special Publication.

    Google Scholar 

  • Ghorab, M. A. (1961). Abnormal stratigraphic features in Ras Gharib oil field. In Third Arab petroleum congress (Vol. 2, p. 10). Alexandria, Egypt.

    Google Scholar 

  • Hofmann, P., Wagner, T., & Beckmann, B. (2003). Millenial- to centennial-scale record of African climate variability and organic carbon accumulation in the Coniacian-Santonian eastern tropical Atlantic (Ocean Drilling Program Site 959, off Ivory Coast and Ghana). Geology, 31, 135–138.

    Article  Google Scholar 

  • Holbourn, A. E. L., & Kuhnt. W. (1998). Turonian-Santonian benthic foraminifer assemblages from Site 959D (Côte d’Ivoire-Ghana Transform Margin, Equatorial Atlantic): indication of a late Cretaceous oxygen minimum zone. In J. Mascle, G. P. Lohmann, & M. Moullade (Eds.), Proceeding of the ODP, Scientific Results (Vol. 159, pp. 375–387). College Station, TX: Ocean Drilling Program.

    Google Scholar 

  • Jarvis, I., Gale, A. S., Jenkyns, H. C., & Pearce, A. (2006). Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6–70.6 Ma). Geological Magazine, 143, 561–608.

    Article  Google Scholar 

  • Jenkyns, H. C. (1980). Cretaceous anoxic events: From continents to oceans. Journal of the Geological Society, 137, 171–188.

    Article  Google Scholar 

  • Jenkyns, H. C. (2010). Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11, Q03004. https://doi.org/10.1029/2009GC002788

    Article  Google Scholar 

  • Jenkyns, H. C., Gale, A. S., & Corfield, R. M. (1994). Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1–34.

    Article  Google Scholar 

  • Khalil, H., & Mashaly, S. (2004). Stratigraphy and stage boundaries of the Upper Cretaceous-Lower Paleogene succession in Gabal Musaba Salama area, southwestern Sinai, Egypt. Egyptian Journal of Paleontology, 4, 1–38.

    Google Scholar 

  • Kora, M., Hamama, H., & Sallam, H. (2002). Senonian macrofauna from west-central Sinai: Biostratigraphy and palaeobiogeography. Egyptian Journal of Paleontology, 2, 435–458.

    Google Scholar 

  • Kraal, P., Slomp, C. P., Forster, A., & Kuypers, M. M. M. (2010). Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 42–54.

    Article  Google Scholar 

  • Kübler, B. 1987. Cristallinité de l’illite, méthodes normalisées de préparations, méthodes normalisées de mesures. Cahiers Institut Géologie de Neuchâtel, Suisse, Série AD.

    Google Scholar 

  • Kump, L. R., & Arthur, M. A. (1999). Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, 161, 181–198.

    Article  Google Scholar 

  • Lamolda, M. A., & Paul, C. R. C. (2007). Carbon and oxygen stable isotopes across the Coniacian/Santonian boundary a Olazagutia, northern Spain. Cretaceous Research, 28, 37–45.

    Article  Google Scholar 

  • Locklair, R., Sageman, B. B., & Lerman, A. (2011). Marine carbon burial flux and the carbon isotope record of Late Cretaceous (Coniacian-Santonian) Oceanic Anoxic Event III. Sedimentary Geology, 235, 38–49.

    Article  Google Scholar 

  • Mandur, M. M. M. (2011). Lithostratigraphy and biostratigraphy of the upper Cretaceous succession of Southeastern Sinai, Egypt. Egyptian Journal of Petroleum, 20, 89–96.

    Article  Google Scholar 

  • McLennan, S. M. (1993). Weathering and global denudation. Journal of Geology, 101, 295–303.

    Article  Google Scholar 

  • Mello, M. R., Koutsoukos, E. A. M., Hart, M. B., Brassell, S. C., & Maxwell, J. R. (1989). Late Cretaceous anoxic events in the Brazilian continental margin. Organic Geochemistry, 14, 529–542.

    Article  Google Scholar 

  • Mort, H. P., Adatte, T., Föllmi, K., Keller, G., Steinmann, P., Matera, V., Berner, Z., & Stüben, D. (2007). Phosphorus and the roles of productivity and nutrient recycling during Oceanic Anoxic Event 2. Geology, 35(6), 483–486.

    Article  Google Scholar 

  • Mort, H. P., Adatte, T., Keller, G., Bartels, D., Föllmi, K. B., Steinmann, P., Berner, Z., & Chellai, E. H. (2008). Organic carbon deposition and phosphorus accumulation during oceanic anoxic event 2 in Tarfaya, Morocco. Cretaceous Research, 29, 1008–1023. https://doi.org/10.1016/j.cretres.2008.05.026

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.

    Article  Google Scholar 

  • Obaidalla, N. A., & Kassab, A. S. (2002). Integrated biostratigraphy of the Coniacian-Santonian sequence, southwestern Sinai, Egypt. Egyptian Journal Paleontology, 2, 85–104.

    Google Scholar 

  • Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 107, 501–504.

    Article  Google Scholar 

  • Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202, 397–416.

    Article  Google Scholar 

  • Rey, O., Simo, J. A., & Lorente, M. A. (2004). A record of long- and short-term environmental and climatic change during OAE3: La Luna Formation, Late Cretaceous (Santonian-early Campanian), Venezuela. Sedimentary Geology, 170, 85–105.

    Article  Google Scholar 

  • Samuel, M. D., Ismail, A. A., Akarish, A. I. M., & Zaky, A. H. (2009). Upper Cretaceous stratigraphy of the Gebel Somar area, north-central Sinai, Egypt. Cretaceous Research, 30, 22–34.

    Article  Google Scholar 

  • Schlanger, S. O., & Jenkyns, H. C. (1976). Cretaceous anoxic events: Causes and consequences. Geologie en Mijnbouw, 55, 179–184.

    Google Scholar 

  • Sohl, N. F., Martinez, E. R., Salmeron-Ureña, P., & Soto-Jaramillo, F. (1991). Upper Cretaceous. In A. Salvador (Ed.), The Gulf of Mexico Basin (pp. 205–244). Geological Society of America, Decade of North American Geology.

    Google Scholar 

  • Suan, G., Föllmi, K. B., Adatte, T., Bomou, B., Spangenberg, J. E., & van De Schootbrugge, B. (2012). Major environmental change and bonebed genesis prior to the Triassic-Jurassic mass extinction. Journal of Geological Society of London, 169, 191–200. https://doi.org/10.1144/0016-76492011-045

    Article  Google Scholar 

  • Takashima, R., Nishi, H., Yamanaka, T., Orihashi, Y., Tsujino, Y., Quidelleur, X., Hayashi, K., Sawada, K., Nakamura, H., & Ando, T. (2019). Establishment of Upper Cretaceous bio- and carbon isotope stratigraphy in the northwest Pacific Ocean and radiometric ages around the Albian/Cenomanian, Coniacian/Santonian and Santonian/Campanian boundaries. Newsletters on Stratigraphy, 52(3), 341–376. https://doi.org/10.1127/nos/2019/0472

    Article  Google Scholar 

  • Voigt, S., & Hilbrecht, H. (1997). Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 39–59.

    Article  Google Scholar 

  • Wagner, T. (2002). Late Cretaceous to early Quaternary organic sedimentation in the eastern Equatorial Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 179, 113–147.

    Article  Google Scholar 

  • Wagner, T., Sinninghe Damste, J. D., Hofmann, P., & Beckmann, B. (2004). Euxinia and primary production in Late Cretaceous equatorial Atlantic surface waters fostered by orbitally driven formation of marine black shales. Paleoceanography, 19, PA4099.

    Google Scholar 

  • Wagreich, M. (2009). Coniacian-Santonian oceanic red beds and their links to Oceanic Anoxic Event 3. SEPM (society for Sedimentary Geology) Special Publication, 91, 235–242.

    Google Scholar 

  • Wagreich, M. (2012). “OAE 3”—Regional Atlantic organic carbon burial during the Coniacian-Santonian. Climate of the past, 8, 1447–1455. https://doi.org/10.5194/cp-8-1447-2012

    Article  Google Scholar 

  • Wendler, I., Wendler, J., Grafe, K.-U., Lehmann, J., & Willems, H. (2009). Turonian to Santonian carbon isotope data from the Tethys Himalaya, southern Tibet. Cretaceous Research, 30, 961–979.

    Article  Google Scholar 

  • Yan, D., Chen, D., Wang, Q., & Wang, J. (2010). Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China. Geology, 38(7), 599–602.

    Article  Google Scholar 

  • Zalat, A. A., Zaid, S. M., Gadallah, M. H., & Abdel-Aziz, Z. A. (2012). Sandstones reservoir quality of the Matulla Formation, Gulf of Suez, Egypt. Australian Journal of Basic and Applied Sciences, 6(12), 511–529.

    Google Scholar 

Download references

Acknowledgements

We warmly thank Peggy Vincent (MNHM, Paris, France), Jeremy E. Martin (ENS Lyon, France) for the vertebrate remains determination, Guillaume Guinot (INSEM, Montpellier, France) for the current study of shark teeth. We warmly also thank Valentina Togni and Alicia Fantasia for their helpful laboratory assistance, Hassan Khozyem for his advice, help in laboratory, and assistance during fieldwork in Egypt, Abdelaziz Tantawy (Aswan University) for his help in the field in Egypt, and Tiffany Monnier and Jean-Claude Lavanchy for the analyses of major element. This research is supported by the Swiss National Science Foundation (Grants 200021-116046/1 and 200020-119943/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahimsamba Bomou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bomou, B., Adatte, T., Spangenberg, J.E. (2023). Palaeoenvironmental and Palaeontological Study of the Gabal Ekma Section (Egypt) Throughout the Coniacian-Santonian Boundary. In: Hamimi, Z., et al. The Phanerozoic Geology and Natural Resources of Egypt. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-95637-0_11

Download citation

Publish with us

Policies and ethics