Skip to main content

Model-Based Joining Process Design for the Body Shop Process Chain

  • Conference paper
  • First Online:
2nd International Conference on Advanced Joining Processes (AJP 2021)

Abstract

The future mobility presents new safety requirements. In addition to the passenger compartment, batteries and hydrogen tanks need also to be intensively protected. High-strength, hot-formed steels, die-cast components and new material pairings pose new challenges for selecting and parametrization the used joining technology. For this reason, the Coupled Process Analysis (CPA) method, for supporting the design and monitoring of joining processes, is presented. From as early as 12 data sets from simulation or experiment (micrograph), it is possible to map interdependencies between the quality criteria of the join and the acting process parameters. The resulting possibilities are illustrated by means of the numerical design of a clinch and a riveted joint as well as the experimental, image-based sampling of a weld seam. Finally a supplemented by a presentation of the potentials in quality monitoring in series operation of the automotive process chain will be done. The combination of high flexibility with respect to the in- and output variables (visual images, FE-meshes, process curves, discrete values), low modeling effort and the image based representation of the interdependencies makes the approach suitable even for employees with lower qualification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acherjee, B., Misra, D., Bose, D., Venkadeshwaran, K.: Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology. Opt. Laser Technol. 41(8), 956–967 (2009). https://doi.org/10.1016/j.optlastec.2009.04.007

    Article  Google Scholar 

  • Acherjee, B., Mondal, S., Tudu, B., Misra, D.: Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics. Appl. Soft Comput. 11(2), 2548–2555 (2011). https://doi.org/10.1016/j.asoc.2010.10.005

    Article  Google Scholar 

  • Acherjee, B., Kuar, A.S., Mitra, S., Misra, D.: Modeling and analysis of simultaneous laser transmission welding of polycarbonates using an FEM and RSM combined approach. Opt. Laser Technol. 44(4), 995–1006 (2012). https://doi.org/10.1016/j.optlastec.2011.10.018

    Article  Google Scholar 

  • Anawa, E.M., Olabi, A.G.: Using Taguchi method to optimize welding pool of dissimilar laser-welded components. Opt. Laser Technol. 40(2), 379–388 (2008). https://doi.org/10.1016/j.optlastec.2007.07.001

    Article  Google Scholar 

  • Bäume, T., Zorn, W., Drossel, W.-G., Rupp, G.: Iterative process control and sensor evaluation for deep drawing tools with integrated piezoelectric actuators. Manuf. Rev. 3(H3) (2016). https://doi.org/10.1051/mfreview/2016002

  • Behrens, B.-A., Groche, P., Krüger, J., Wulfsberg, J.P.: WGP-Standpunkt Industriearbeitsplatz 2025. Technical Report, WGP Wissenschaftliche Gesellschaft für Produktionstechnik e.V., Hannover (2018)

    Google Scholar 

  • Benyounis, K.Y., Olabi, A.G.: Optimization of different welding processes using statistical and numerical approaches—a reference guide. Adv. Eng. Softw. 39(6), 483–496 (2008). https://doi.org/10.1016/j.advengsoft.2007.03.012

    Article  Google Scholar 

  • Breckweg, A.: Automatisiertes und prozessüberwachtes Radialclinchen höherfester Blechwerkstoffe. Doctoral thesis, University of Stuttgart (2006)

    Google Scholar 

  • Datta, S., Nandi, G., Bandyopadhyay, A., Kumar Pal, P.: Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of sub-merged arc weld. A case study. Int. J. Adv. Manuf. Technol. 45(3–4), 276–286 (2009). https://doi.org/10.1007/s00170-009-1976-0

  • Dhas, J.E.R., Dhas, S.J.H.: A review on optimization of welding process. Procedia Eng. 38, 544–554 (2012). https://doi.org/10.1016/j.proeng.2012.06.068

    Article  Google Scholar 

  • Drossel, W.-G., Falk, T., Israel, M., Jesche, F.: Unerring planning of clinching processes through the use of mathematical methods. KEM 611–612, 1437–1444 (2014). https://doi.org/10.4028/www.scientific.net/KEM.611-612.1437

    Article  Google Scholar 

  • EÅŸme, U.: Application of Taguchi method for the optimization of resistance spot welding process. Arabian J. Sci. Eng. 34(2B) (2009)

    Google Scholar 

  • Gunaraj, V., Murugan, N.: Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J. Mater. Process. Technol. 88(1–3), 266–275 (1999). https://doi.org/10.1016/S0924-0136(98)00405-1

    Article  Google Scholar 

  • Hahn, O., Tan, Y.: Vorhersage des Tragverhaltens von Clinchverbindungen unter quasi-statischer Scherzugbelastung mittels eines neuronalen Netzes. Schweißen Und Schneiden 4, 138–143 (2003)

    Google Scholar 

  • Hahn, O., Tan, Y., Voight, H.-M.: Maschinelles Lernen zur Vorhersage der Tragfähigkeit von Clinchverbindungen. UTF Sci. 1 (2005)

    Google Scholar 

  • Hu, M., Lin, Z., Lai, X., Ni, J.: Simulation and analysis of assembly processes considering compliant, non-ideal parts and tooling variations. Int. J. Mach. Tools Manuf. 41(15), 2233–2243 (2001). https://doi.org/10.1016/S0890-6955(01)00044-X

    Article  Google Scholar 

  • Ismail, M.I.S., Okamoto, Y., Okada, A.: Neural network modeling for prediction of weld bead geometry in laser microwelding. Adv. Opt. Technol. 5, 1–7 (2013). https://doi.org/10.1155/2013/415837

  • Jäckel, M., Falk, T., Landgrebe, D.: Concept for further development of self-pierce riveting by using cyber physical systems. Procedia CIRP 44, 293–297 (2016). https://doi.org/10.1016/j.procir.2016.02.073

    Article  Google Scholar 

  • Jiang, P., Cao, L., Zhou, Q., Gao, Z., Rong, Y., Shao, X.: Optimization of welding process parameters by combining Kriging surrogate with particle swarm optimization algorithm. Int. J. Adv. Manuf. Technol. 86(9–12), 2473–2483 (2016). https://doi.org/10.1007/s00170-016-8382-1

    Article  Google Scholar 

  • Kriechenbauer, S., Müller, P., Mauermann, R., Drossel, W.-G.: Extension of process limits with bidirectional deep drawing: In: Behrens, B.A., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P. (eds.) Production at the Leading Edge of Technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg (2020). https://doi.org/10.1007/978-3-662-62138-7_10

  • Lambiase, F., Di Ilio, A.: Optimization of the clinching tools by means of integrated FE modeling and artificial intelligence techniques. Procedia CIRP 12, 163–168 (2013). https://doi.org/10.1016/j.procir.2013.09.029

    Article  Google Scholar 

  • Liao, B., Shi, Y., Cui, Y., Cui, S., Jiang, Z., Yi, Y.: Mathematical model for prediction and optimization of weld bead geometry in all-position automatic welding of Pipes. Metals 8(10), 756 (2018). https://doi.org/10.3390/met8100756

    Article  Google Scholar 

  • Lightfoot, M.P., Bruce, G.J., McPherson, N.A., Woods, K.: The application of artificial neural networks to weld-induced deformation in ship plate. Welding J. 23–30 (2004)

    Google Scholar 

  • Mirapeix, J., García-Allende, P.B., Cobo, A., Conde, O.M., López-Higuera, J.M.: Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks. NDT & E Int. 40(4), 315–323 (2007). https://doi.org/10.1016/j.ndteint.2006.12.001

    Article  Google Scholar 

  • Oudjene, M., Ben-Ayed, L.: On the parametrical study of clinch joining of metallic sheets using the Taguchi method. Eng. Struct. 30(6), 1782–1788 (2008). https://doi.org/10.1016/j.engstruct.2007.10.017

    Article  Google Scholar 

  • Oudjene, M., Ben-Ayed, L., Delamézière, A., Batoz, J.: Shape optimization of clinching tools using the response surface methodology with moving least-square approximation. J. Mater. Process. Technol. 209(1), 289–296 (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.030

    Article  Google Scholar 

  • Padmanaban, G., Balasubramanian, V.: Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy. Opt. Laser Technol. 42(8), 1253–1260 (2010). https://doi.org/10.1016/j.optlastec.2010.03.019

    Article  Google Scholar 

  • Pan, L.K., Wang, C.C., Hsiao, Y.C., Ho, K.C.: Optimization of Nd. YAG laser welding onto magnesium alloy via Taguchi analysis. Opt. Laser Technol. 37(1), 33–42 (2005). https://doi.org/10.1016/j.optlastec.2004.02.007

  • Purr, S., Meinhardt, J., Moelzl, K., Ostermair, M., Hagenah, H., Merklein, M.: Stamping plant 4.0—data mining for investigation and prediction of quality issues in manufacturing car body parts. In: Landgrebe, D., Drossel, W.-G., Putz, M. (eds.) 5th International Conference on Accuracy in Forming Technology and 22nd Saxon Conference on Forming Technology SFU 2015, pp. 623–642. Verlag Wissenschaftliche Scripten, Tagungsband; Auerbach (2015). https://doi.org/10.5120/12106-8375

  • Rao, P.S., Gupta, O.P., Murty, S.S.N., Rao, A.B.K.: Effect of process para-meters and mathematical model for the prediction of bead geometry in pulsed GMA welding. Int. J. Adv. Manuf. Technol. 45(5–6), 496–505 (2009). https://doi.org/10.1007/s00170-009-1991-1

    Article  Google Scholar 

  • Roux, E., Bouchard, P.: Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. J. Mater. Process. Technol. 213(7), 1038–1047 (2013). https://doi.org/10.1016/j.jmatprotec.2013.01.018

    Article  Google Scholar 

  • Schwarz, C., Ackert, P., Mauermann, R.: Principal component analysis and singular value decomposition used for a numerical sensitivity analysis of a complex drawn part. Int. J. Adv. Manuf. Technol. 894, 2255–2265 (2018). https://doi.org/10.1007/s00170-017-0980-z

    Article  Google Scholar 

  • Schwarz, C., Kropp, T., Kraus, C., Drossel, W.-G.: Optimization of thick sheet clinching tools using principal component analysis. Int. J. Adv. Manuf. Technol. 106, 471–479 (2020). https://doi.org/10.1007/s00170-019-04512-5

  • Schwarz, C., Link, P., Ihlenfeldt, S., Drossel, W.-G.: Application of Fourier-related data reduction methods in sheet metal forming. Procedia CIRP 99, 206–265 (2021). https://doi.org/10.1016/j.procir.2021.03.038

    Article  Google Scholar 

  • Sivaraos Milkey, K.R., Samsudin, A.R., Dubey, A.K., Kidd, P.: Comparison between Taguchi method and response surface methodology (RSM) in modelling CO2 laser machining. Jordan J. Mech. Indust. Eng. 8(1), 35–42 (2014)

    Google Scholar 

  • Srivastava, S., Garg, R.K.: Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology. J. Manuf. Process. 25, 296–305 (2017). https://doi.org/10.1016/j.jmapro.2016.12.016

    Article  Google Scholar 

  • Tan, Y., Hahn, O., Du, F., Voigt, H.: Non-destructive determination of the loading capacities of clinched DC 04 joints by kNN-regression. Mater. Test. 48(5), 211 (2006)

    Article  Google Scholar 

  • Thoms, V., Kalich, J.: Prozessvorhersage beim Stanznieten mit neuronalen Netzen, EFB-Forschungsbericht Nr. 179. EFB 2002, Hannover (2002)

    Google Scholar 

  • Wahl, M., Schulz, F., Altermann, T., Eckert, A.: Die Prozesskettensimulation - Ein Beitrag zum virtuellen Karosseriebau. In: Neugebauer, Reimund, (eds) Karosserien fertigen - nachhaltig und effizient, pp. 259–269. Verlag Wissenschaftliche Scripten, Tagungsband; Zwickau (2011)

    Google Scholar 

  • Wang, M., Xiao, G., Li, Z., Wang, J.: Shape optimization methodology of clinching tools based on Bezier curve. Int. J. Adv. Manuf. Technol. 24(1) (2017). https://doi.org/10.1007/s00170-017-0987-5

  • Xu, W.H., Lin, S.B., Fan, C.L., Zhuo, X.Q., Yang, C.L.: Statistical modelling of weld bead geometry in oscillating arc narrow gap all-position GMA welding. Int. J. Adv. Manuf. Technol. 72(9–12), 1705–1716 (2014). https://doi.org/10.1007/s00170-014-5799-2

    Article  Google Scholar 

  • Yang, Y., Gao, Z., Cao, L.: Identifying optimal process parameters in deep penetration laser welding by adopting Hierarchical-Kriging model. Infrared Phys. Technol. 92, 443–453 (2018). https://doi.org/10.1016/j.infrared.2018.07.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwarz, C., Ackert, P., Falk, T., Puschmann, M., Mauermann, R., Drossel, WG. (2022). Model-Based Joining Process Design for the Body Shop Process Chain. In: da Silva, L.F.M., Martins, P.A.F., Reisgen, U. (eds) 2nd International Conference on Advanced Joining Processes (AJP 2021). Proceedings in Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-95463-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95463-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95462-8

  • Online ISBN: 978-3-030-95463-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics