Skip to main content

The Role of Noninvasive Multimodal Neuromonitoring

  • Chapter
  • First Online:
COVID-19 Critical and Intensive Care Medicine Essentials

Abstract

The pathophysiology of neurological injury related to Coronavirus disease-2019 (COVID-19) is multifactorial. Several pathophysiological pathways have been described in patients with COVID-19 infection presenting neurological complications. Microangiopathy has been shown to be an important underlying process causing small vessel cerebral infarct [1] or hemorrhagic transformations; endotheliitis, has been reported in the context of systemic inflammatory response (SIRS) which is shared among other COVID-19 related clinical presentations [2]. Direct viral cytopathic injury has been described in anatomopathological samples in patients with encephalitis. Autoimmune processes leading to peripheral or central neuritis have also been described with COVID infection [3]. Therefore, neurological injury related to COVID-19 may present with a variety of overlapping syndromes. This pathological myriad impacts in the monitoring of these patients as there is no specific surveillance that can be used for the screening of evolving neurological complications. Early detection of neurological complications is warranted to prevent and manage neurological complications. However, there is no concrete monitoring to apply to each of these scenarios, physicians need to be guided by high level clinical suspicion and an approach of diagnostic exclusion in the daily management of these patients. In this context, the role of noninvasive multimodal neuromonitoring acquires a new perspective in COVID-19. This chapter overviews the possible ways to early detect patients at risk of neurological complications, highlighting the importance of multimodal neuromonitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qureshi AI, Baskett WI, Huang W, et al. Acute ischemic stroke and COVID-19. Stroke. 2021;52(3):905–12. https://doi.org/10.1161/STROKEAHA.120.031786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Azizi SA, Azizi S-A. Neurological injuries in COVID-19 patients: direct viral invasion or a bystander injury after infection of epithelial/endothelial cells. J Neurovirol. 2020;26(5):631–41. https://doi.org/10.1007/s13365-020-00903-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Battaglini D, Brunetti I, Anania P, et al. Neurological manifestations of severe SARS-CoV-2 infection: potential mechanisms and implications of individualized mechanical ventilation settings. Front Neurol. 2020;11:845. https://doi.org/10.3389/fneur.2020.00845.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Battaglini D, Santori G, Chandraptham K, et al. Neurological complications and noninvasive multimodal neuromonitoring in critically ill mechanically ventilated COVID-19 patients. Front Neurol. 2020;11:602114. https://doi.org/10.3389/fneur.2020.602114.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Li M, Wang M, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol. 2020;5(3):279–84. https://doi.org/10.1136/svn-2020-000431.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pun BT, Badenes R, Heras La Calle G, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021;9(3):239–50. https://doi.org/10.1016/S2213-2600(20)30552-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rasulo FA, Togni T, Romagnoli S. Essential noninvasive multimodality neuromonitoring for the critically ill patient. Crit Care. 2020;24(1):100. https://doi.org/10.1186/s13054-020-2781-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brasil S, Taccone FS, Wahys SY, et al. Cerebral hemodynamics and intracranial compliance impairment in critically ill COVID-19 patients: a pilot study. Brain Sci. 2021;11(7):874. https://doi.org/10.21203/rs.3.rs-125420/v1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Battaglini D, Anania P, Rocco PRM, et al. Escalate and de-escalate therapies for intracranial pressure control in traumatic brain injury. Front Neurol. 2020;11:564751. https://doi.org/10.3389/fneur.2020.564751.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rasulo FA, Bertuetti R, Robba C, et al. The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care. 2017;21(1):44. https://doi.org/10.1186/s13054-017-1632-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wood MD, Boyd JG, Wood N, et al. The use of near-infrared spectroscopy and/or transcranial Doppler as non-invasive markers of cerebral perfusion in adult sepsis patients with delirium: a systematic review. J Intensive Care Med. 2021;37(3):408–22. https://doi.org/10.1177/0885066621997090.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lau VI, Arntfield RT. Point-of-care transcranial Doppler by intensivists. Crit Ultrasound J. 2017;9(1):21. https://doi.org/10.1186/s13089-017-0077-9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cardim D, Robba C, Bohdanowicz M, et al. Non-invasive monitoring of intracranial pressure using transcranial Doppler ultrasonography: is it possible? Neurocrit Care. 2016;25(3):473–91. https://doi.org/10.1007/s12028-016-0258-6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brasil S, Renck AC, Taccone FS, et al. Obesity and its implications on cerebral circulation and intracranial compliance in severe COVID-19. Obes Sci Pract. 2021;7(6):751–9. https://doi.org/10.1002/osp4.534.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Asgari S, Bergsneider M, Hamilton R, Vespa P, Hu X. Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit Care. 2011;15(1):55–62. https://doi.org/10.1007/s12028-010-9463-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Batra A, Clark JR, LaHaye K, et al. Transcranial Doppler ultrasound evidence of active cerebral embolization in COVID-19. J Stroke Cerebrovasc Dis. 2021;30(3):105542. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105542.

    Article  PubMed  Google Scholar 

  17. Salazar-Orellana JLI, García-Grimshaw M, Valdés-Ferrer SI, et al. Detection of pulmonary shunts by transcranial Doppler in hospitalized non-mechanically ventilated Coronavirus disease-19 patients. Rev Invest Clin. 2021;73(2):61. https://doi.org/10.24875/RIC.20000569.

    Article  CAS  Google Scholar 

  18. Ziai WC, Cho S-M, Johansen MC, Ergin B, Bahouth MN. Transcranial Doppler in acute COVID-19 infection. Stroke. 2021;52:2422–6. https://doi.org/10.1161/STROKEAHA.120.032150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reynolds AS, Lee AG, Renz J, et al. Pulmonary vascular dilatation detected by automated transcranial Doppler in COVID-19 pneumonia. Am J Respir Crit Care Med. 2020;202(7):1037–9. https://doi.org/10.1164/rccm.202006-2219LE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hakim SM, Abdellatif AA, Ali MI, Ammar MA. Reliability of transcranial sonography for assessment of brain midline shift in adult neurocritical patients: a systematic review and meta-analysis. Minerva Anestesiol. 2021;87(4):467–75. https://doi.org/10.23736/S0375-9393.20.14624-8.

    Article  PubMed  Google Scholar 

  21. Liao C-C, Chen Y-F, Xiao F. Brain midline shift measurement and its automation: a review of techniques and algorithms. Int J Biomed Imaging. 2018;2018:1–13. https://doi.org/10.1155/2018/4303161.

    Article  Google Scholar 

  22. Cho S-M, Premraj L, Fanning J, et al. Ischemic and hemorrhagic stroke among critically ill patients with Coronavirus Disease 2019: An International Multicenter Coronavirus Disease 2019 Critical Care Consortium Study. Crit Care Med. 2021;49:e1223. https://doi.org/10.1097/CCM.0000000000005209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sekhon MS, Griesdale DE, Robba C, et al. Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med. 2014;40(9):1267–74. https://doi.org/10.1007/s00134-014-3392-7.

    Article  PubMed  Google Scholar 

  24. Robba C, Cardim D, Tajsic T, et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. PLoS Med. 2017;14(7):e1002356. https://doi.org/10.1371/journal.pmed.1002356.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Robba C, Messina A, Battaglini D, et al. Early effects of passive leg-raising test, fluid challenge, and norepinephrine on cerebral autoregulation and oxygenation in COVID-19 critically ill patients. Front Neurol. 2021;12:674466. https://doi.org/10.3389/fneur.2021.674466.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robba C, Ball L, Battaglini D, et al. Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study. Crit Care. 2021;25(1):111. https://doi.org/10.1186/s13054-021-03537-1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen J, Gombart Z, Rogers S, Gardiner S, Cecil S, Bullock R. Pupillary reactivity as an early indicator of increased intracranial pressure: the introduction of the neurological pupil index. Surg Neurol Int. 2011;2(1):82. https://doi.org/10.4103/2152-7806.82248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oddo M, Sandroni C, Citerio G, et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study. Intensive Care Med. 2018;44(12):2102–11. https://doi.org/10.1007/s00134-018-5448-6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Suys T, Bouzat P, Marques-Vidal P, et al. Automated quantitative pupillometry for the prognostication of coma after cardiac arrest. Neurocrit Care. 2014;21(2):300–8. https://doi.org/10.1007/s12028-014-9981-z.

    Article  PubMed  Google Scholar 

  30. Favre E, Bernini A, Morelli P, et al. Neuromonitoring of delirium with quantitative pupillometry in sedated mechanically ventilated critically ill patients. Crit Care. 2020;24(1):66. https://doi.org/10.1186/s13054-020-2796-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sewell L, Abbas A, Kane N. Introduction to interpretation of the EEG in intensive care. BJA Educ. 2019;19(3):74–82. https://doi.org/10.1016/j.bjae.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  32. Kubota T, Gajera PK, Kuroda N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav. 2021;115:107682. https://doi.org/10.1016/j.yebeh.2020.107682.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Micali, M., Bellapart, J., Battaglini, D. (2022). The Role of Noninvasive Multimodal Neuromonitoring. In: Battaglini, D., Pelosi, P. (eds) COVID-19 Critical and Intensive Care Medicine Essentials. Springer, Cham. https://doi.org/10.1007/978-3-030-94992-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94992-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94991-4

  • Online ISBN: 978-3-030-94992-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics