Skip to main content

Biomechanical Approach to Stability of Intersomatic Implants in Cervical Spine

  • Chapter
  • First Online:
Cervical Spine
  • 816 Accesses

Abstract

A frequent complication with intersomatic implants (e.g. cages) is still subsidence. The knowledge of the mechanism of these subsidences is not yet well established. The preparation of the endplate is still controversially discussed. The strength of the natural endplate is provided by the combination of a compact cover layer as a shell over underlying spongious bone as an elastic foundation. In the sense of a trade-off, cuts into the endplate are considered necessary to assure biological bridging but shall have minimal extensions to prevent loss of strength. A personal conceptual model of the head and its cervical vertebral column reveals static loads on an exemplary C5 vertebra of 131 N normal and 32 N shear load. Increasing these loads by a load factor of 1.4 to reflect activities of daily living, lifts these loads to 183 N and 45 N respectively. The order of magnitude of these loads is considered rather small and cannot confirm lack of strength as the only (or main) reason for subsidence. Other factors must also be looked at. In the case of a cage, it must be positioned in such way that the shear loads will still be transferred by the facet joints, since shear may be detrimental for an implant-/bone-interface in the early post-operative phase, especially when shear leads to micromotion. The implant must be prevented from tilting with resulting local stress concentration. Due to the new load distribution and the surgery, bone will be subject to remodeling and should be protected in this critical transition phase. Finally also the consequences of the disturbance of the once healthy biological balance between spongious bone, endplates, nucleus pulposus, endplates, spongious bone must be kept in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang H, et al. Micromechanics of the human vertebral body for forward flexion. J Biomech. 2012;45(12):2142–8.

    Article  Google Scholar 

  2. Ferguson S, Steffen T. Biomechanics of the aging spine. Eur Spine J. 2003;12(Suppl 2):S97–103.

    Article  Google Scholar 

  3. Currey J. The mechanical adaptations of bones. Princeton: Princeton University Press; 1984.

    Book  Google Scholar 

  4. Lowe TG, et al. A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine. 2004;29:2389–94.

    Article  Google Scholar 

  5. Steffen T, Tsantrizos A, Aebi M. Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine. 2000;25:1077–84.

    Article  CAS  Google Scholar 

  6. Eswaran SK, Gupta A, Adams MF, et al. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res. 2006;21:307–14.

    Article  Google Scholar 

  7. Jackman TM, Hussein AI, Adams AM, et al. Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone. J Orthop Res. 2014;32:880–6.

    Article  Google Scholar 

  8. Mosekilde L. Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int. 1993;53:S121–6.

    Article  Google Scholar 

  9. Hou Y, Luo Z. A study on the structural properties of the lumbar endplate histological structure, the effect of bone density, and spinal level. Spine. 2009;34:E427–33.

    Article  Google Scholar 

  10. Lim TH, Kwon H, Jeon CH, et al. Effect of endplate conditions and bone mineral density on the compressive strength of the graft–endplate interface in anterior cervical spine fusion. Spine. 2001;26:951–6.

    Article  CAS  Google Scholar 

  11. Rockoef SD, Sweet E, Bletjstein JRY. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calc Tiss Res. 1969;3:163–75.

    Article  Google Scholar 

  12. Cheng CC, Ordway NR, Zhang X. Loss of cervical endplate integrity following minimal surface preparation. Spine. 2007;32:1852–5.

    Article  Google Scholar 

  13. Kapandji IA. The Physiology of the joints. In: The trunk and the vertebral column, vol. 3. 2nd ed. Edinburgh: Churchill Livingstone; 1974.

    Google Scholar 

  14. Grob D. A comparison of outcomes of cervical disc arthroplasty and fusion in everyday clinical practice: surgical and methodological aspects. Eur Spine J. 2010;19:297–306.

    Article  Google Scholar 

  15. Nabhan A. Assessment of adjacent-segment mobility after cervical disc replacement versus fusion: RCT with 1 year’s results. Eur Spine J. 2011;20:934–41.

    Article  CAS  Google Scholar 

  16. Tan JS, Bailey CS, Dvorak MF, et al. Interbody device shape and size are important to strengthen the vertebra–implant interface. Spine. 2005;30:638–44.

    Article  Google Scholar 

  17. Hasegawa K, Abe M, Washio T, et al. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine. 2001;26:957–63.

    Article  CAS  Google Scholar 

  18. Truumees E, Demetropoulos CK, Yang KH, et al. Failure of human cervical endplates: a cadaveric experimental model. Spine. 2003;28:2204–8.

    Article  Google Scholar 

  19. Wolff J. Das Gesetz der Transformation der Knochen. Hirschwald; Berlin; 1892. Translated by Maquet P, Furlong R. The law of bone remodelling. Heidelberg: Springer. p. 1986.

    Google Scholar 

  20. Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17(9):1621–8.

    Article  CAS  Google Scholar 

  21. Ordway NR, et al. Anterior cervical interbody constructs: effect of a repetitive compressive force on the endplate. J Orthop Res. 2012;April:587–92.

    Article  Google Scholar 

  22. Moroney AP, Schultz AB, Miller JAA. Analysis and measurement of neck loads. J Orthop Res. 1988;6:6713–20.

    Article  Google Scholar 

  23. Harms-Ringdahl K, Ekholm J, Schüldt K. Load moments and myoelectric activity when the cervical spine is held in full flexion and extension. Ergonomics. 1986;29:1539–52.

    Article  CAS  Google Scholar 

  24. White AA, Panjabi MM. Clinical biomechanics of the spine. Philadelphia: J.B. Lippincott Company; 1990.

    Google Scholar 

  25. Hwang TH, Reh J, Effenberg AO, et al. Real-time gait analysis using a single head-worn inertial measurement unit. IEEE Trans Consumer Electron. 2018;64:240–8.

    Article  Google Scholar 

  26. Kavanagh JJ, Morrison S, Barrett RS. Coordination of head and trunk accelerations during walking. Eur J Appl Physiol. 2005;94:468–75.

    Article  CAS  Google Scholar 

  27. Zhang X, Ordway NR, Tan R. Correlation of ProDisc-C failure strength with cervical bone mineral content and endplate strength. J Spinal Disord Tech. 2008;21:400–5.

    Article  Google Scholar 

  28. Xavier F, Jauregui JJ, Cornish N. Regional variations in shear strength and density of the human thoracic vertebral endplate and trabecular bone. Int J Spine Surg. 2017;10:41–9.

    Google Scholar 

  29. Grant JP, Oxlnd TR, Dvorak MF, et al. The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res. 2002;5:1115–20.

    Article  Google Scholar 

  30. Carter DR, et al. Relationships between loading history and femoral cancellous bone architecture. J Biomechanics. 1989;22(3):231–44.

    Article  CAS  Google Scholar 

  31. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic and spinal implants. J Biomaterials. 2007;28(32):4845–69.

    Article  CAS  Google Scholar 

  32. http://www.aerospacemetals.com/titanium-ti-6al-4v-ams-4911.html

  33. Petersen RC. Bisphenil-polymer/carbon-fiber-reinforced composite compared to titanium alloy bone implant. Int J Polym Sci. 2011;2011:Article ID 168924. 11 p.

    Article  Google Scholar 

  34. Datasheet Bionate ® (2009) by DSM PTG, 2810 7th Street, Berkeley, CA 94710

    Google Scholar 

  35. Datasheet Carbosil ® (2009) by DSM PTG, 2810 7th Street, Berkeley, CA 94710

    Google Scholar 

  36. Martínez-Vázquez FJ, et al. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010;6:4361–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Freudiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freudiger, S. (2022). Biomechanical Approach to Stability of Intersomatic Implants in Cervical Spine. In: Menchetti, P.P.M. (eds) Cervical Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-94829-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94829-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94828-3

  • Online ISBN: 978-3-030-94829-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics