Skip to main content

The Mechanics of Fracture in Dental Ceramics

  • Chapter
  • First Online:
Dental Ceramics
  • 497 Accesses

Abstract

In this chapter, we will be presenting the main concepts of fracture mechanics, such as strength, fracture toughness, R-curve behavior, and subcritical crack growth, how to interpret these properties and how to perform accurate testing. The influence of defect size, shape, and distribution within the material will be addressed in the context of the statistical distribution of strength, while emphasis on aspects related to the microstructure will be related to the dynamic interaction with the crack front and wake, creating toughening mechanisms that will affect how fracture toughness will improve and develop. The static and dynamic relationship between strength and crack length will ultimately define the character of the fracture behavior under subcritical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO 6872. Dentistry—ceramic materials. Geneva: International Organization for Standardization; 2015.

    Google Scholar 

  2. Jayatilaka ADS, Trustrum K. Statistical approach to brittle-fracture. J Mater Sci. 1977;12:1426–30.

    Article  Google Scholar 

  3. Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18:293–7.

    Article  Google Scholar 

  4. Weibull W. A statistical theory of the strength of materials, Ingenlorsvetenakapademiens Handlinger. Stockholm: Generalstabens litografiska anstalts förlag; 1930.

    Google Scholar 

  5. EN-843-5. Mechanical testing of monolithic ceramics at room temperature. Part 5: Statistical treatment. 1997.

    Google Scholar 

  6. Danzer R, Supancic P, Pascual J, Lube T. Fracture statistics of ceramics—Weibull statistics and deviations from Weibull statistics. Eng Fract Mech. 2007;74:2919–32.

    Article  Google Scholar 

  7. Lohbauer U, Belli R, Arnetzl G, Scherrer SS, Quinn G. Fracture of a veneered-ZrO2 dental prosthesis from an inner thermal crack. Case Stud Eng Fail Anal. 2014;2:100–6.

    Article  Google Scholar 

  8. Belli R, Lohbauer U. The breakdown of the Weibull behavior in dental zirconias. J Am Ceram Soc. 2021;104:4819–28.

    Google Scholar 

  9. Belli R, Scherrer SS, Lohbauer U. Report on fractures of trilayered all-ceramic fixed dental prostheses. Case Stud Eng Fail Analysis. 2016;7:71–9.

    Google Scholar 

  10. Belli R, Volkl H, Csato S, Tremmel S, Wartzack S, Lohbauer U. Development of a hoop-strength test for model sphero-cylindrical dental ceramic crowns: FEA and fractography. J Eur Ceram Soc. 2020;40:4753–64.

    Article  Google Scholar 

  11. Munz D, Fett T. Ceramics: mechanical properties, failure behavior, materials selection. Berlin: Springer; 1999.

    Book  Google Scholar 

  12. Gorjan L, Ambrozic M. Bend strength of alumina ceramics: a comparison of Weibull statistics with other statistics based on very large experimental data set. J Eur Ceram Soc. 2012;32:1221–7.

    Article  Google Scholar 

  13. Danzer R, Lube T, Supancic P. Monte Carlo simulations of strength distributions of brittle materials—type of distribution, specimen and sample size. Zeitschrift Fur Metallkunde. 2001;92:773–83.

    Google Scholar 

  14. Quinn GD. Weibull strength scaling for standardized rectangular flexure specimens. J Am Ceram Soc. 2003;86:508–10.

    Article  Google Scholar 

  15. Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, et al. Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater. 2017;33:99–109.

    Article  PubMed  Google Scholar 

  16. Baratta FI, Matthews WT, Quinn GD. Errors associated with flexure testing of brittle materials. Report no. MTL TR 87–35, US Army Materials Technology Laboratory. 1987.

    Google Scholar 

  17. Quinn GD, Morell R. Design data for engineering ceramics: a review of the flexure test. J Am Ceram Soc. 1991;74:2037–66.

    Article  Google Scholar 

  18. Lube T, Manner M, Danzer R. The miniaturization of the 4-point-bend test. Fatigue Fract Eng Mater Struct. 1997;30:1605–16.

    Article  Google Scholar 

  19. Pick B, Meira JBC, Driemeier L, Braga RR. A critical view on biaxial and short-beam uniaxial flexural strength tests applied to resin composites using Weibull, fractographic and finite element analysis. Dent Mater. 2010;26:83–90.

    Article  PubMed  Google Scholar 

  20. Lube T, Manner M. Development of a bending-test device for small samples. Key Eng Mater. 1997;132–136:488–91.

    Article  Google Scholar 

  21. Belli R, Wendler M, Zorzin JI, Lohbauer U. Practical and theoretical considerations on the fracture toughness testing of dental restorative materials. Dent Mater. 2018;34:97–119.

    Article  PubMed  Google Scholar 

  22. Staudacher M, Lube T, Schlacher J, Supancic P. Comparison of biaxial strength measured with the ball-on-three-balls and the ring-on-ring-test. Open Ceram. 2021;6:100101.

    Article  Google Scholar 

  23. Börger A, Supancic P, Danzer R. The ball on three balls test for strength testing of brittle discs: stress distribution in the disc. J Eur Ceram Soc. 2002;22:1425–36.

    Article  Google Scholar 

  24. Börger A, Supancic P, Danzer R. The ball on three balls test for strength testing of brittle discs: part II: analysis of possible errors in the strength determination. J Eur Ceram Soc. 2004;24:2917–28.

    Article  Google Scholar 

  25. Danzer R, Supancic P, Harrer W. Biaxial tensile strength test for brittle rectangular plates. J Ceram Soc Jpn. 2006;114:1054–60.

    Article  Google Scholar 

  26. Harrer W, Danzer R, Supancic P, Lube T. The ball on three balls test: strength testing of specimens of different sizes and geometries. Proceedings of the 10th ECerS Conference. 2007. p. 1271–5.

    Google Scholar 

  27. Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech. 1957;24:361–4.

    Article  Google Scholar 

  28. Inglis CE. Stresses in a plate due to the presence of cracks and sharp corners. Trans Inst Naval Archit. 1913;55:219–41.

    Google Scholar 

  29. Griffith AA. The phenomena of rupture and flow in solids. Phil Trans R Soc Lond A. 1921;221:168–98.

    Google Scholar 

  30. Wieghardt K. Über das Spalten und Zerreissen elastischer Körper. Z Math Phys. 1907;55:60–103.

    Google Scholar 

  31. Soderholm KJ. Review of the fracture toughness approach. Dent Mater. 2010;26:E63–77.

    Article  PubMed  Google Scholar 

  32. Danzer R. On the relationship between ceramic strength and the requirements for mechanical design. J Eur Ceram Soc. 2014;34:3435–60.

    Article  Google Scholar 

  33. Quinn GD, Swab JJ. Fracture toughness of glasses as measured by the SCF and SEPB methods. J Eur Ceram Soc. 2017;37:4243–57.

    Article  Google Scholar 

  34. Quinn GD, Swab JJ, Motyka MJ. Fracture toughness of a toughened silicon nitride by ASTM C 1421. J Am Ceram Soc. 2003;86:1043–5.

    Article  Google Scholar 

  35. Quinn GD. Refinements to the surface crack in flexure method for fracture toughness of ceramics. J Eur Ceram Soc (Vii, Pt 1–3). 2002;206-2:633–6.

    Google Scholar 

  36. Quinn GD. The fracture toughness round robins in VAMAS: what we have learned. In: Salem JA, Quinn GD, Jenkins MG, editors. Fracture resistance testing of monolithic and composite brittle materials, ASTM STP 1409. West Conshohocken, PA: ASTM International; 2002. p. 107–26.

    Chapter  Google Scholar 

  37. Quinn GD, Salem JA. Effect of lateral cracks on fracture toughness determined by the surface-crack-in-flexure method. J Am Ceram Soc. 2002;85:873–80.

    Article  Google Scholar 

  38. Swab JJ, Quinn GD. Effect of precrack “halos” on fracture toughness determined by the surface crack in flexure method. J Am Ceram Soc. 1998;81:2261–8.

    Article  Google Scholar 

  39. Quinn G. On the applicability of ASTM Standard C 1421 for fracture toughness KIc to glasses and dental restorative materials. Oral presentation at the ACerS Meeting, Daytona Beach. 2015.

    Google Scholar 

  40. Quinn GD, Gettings RJ, Kübler JJ. Fracture toughness of ceramics by the surface crack in flexure method: results from the VAMASround robin. Ceram Eng Sci Proc. 1994;15:846–55.

    Article  Google Scholar 

  41. Quinn GD, Salem J, Baron I, Cho K, Foley M, Fang H. Fracture-toughness of advanced ceramics at room-temperature. J Res Natl Inst Stand Technol. 1992;97:579–607.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical-evaluation of indentation techniques for measuring fracture-toughness. 1. Direct crack measurements. J Am Ceram Soc. 1981;64:533–8.

    Article  Google Scholar 

  43. Munz DG, Shannon JL, Bubsey RT. Fracture-toughness calculation from maximum load in 4 point bend tests of Chevron notch specimens. Int J Fract. 1980;16:R137–R41.

    Article  Google Scholar 

  44. ASTM C1421. Standard test methods for determination of fracture toughness of advances ceramics at ambient temperature. West Conshohocken: ASTM International; 2010.

    Google Scholar 

  45. ISO18756. Fine ceramics (advanced ceramics, advanced technical ceramics)—determination of fracture toughness of monolithic ceramics at room temperature by the surface crack in flexure (SCF) method. Geneva: International Organization for Standardization; 2003.

    Google Scholar 

  46. ISO24370. Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for fracture toughness of monolithic ceramics at room temperature by chevron-notched beam (CNB) method. Geneva: International Organization for Standardization; 2005.

    Google Scholar 

  47. ISO15732. Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for fracture toughness of monolithic ceramics at room temperature by single edge precracked beam (SEPB) method. Geneva: International Organization for Standardization; 2003.

    Google Scholar 

  48. Marshall DB, Evans AG. Comment on elastic-plastic indentation damage in ceramics—the median-radial crack system—reply. J Am Ceram Soc. 1981;64:C182–C3.

    Article  Google Scholar 

  49. Evans AG, Charles EA. Fracture toughness determinations by indentation. J Am Ceram Soc. 1976;59:371–2.

    Article  Google Scholar 

  50. Chantikul P, Anstis GR, Lawn BR, Marshall DB. A critical-evaluation of indentation techniques for measuring fracture-toughness. 2. Strength method. J Am Ceram Soc. 1981;64:539–43.

    Article  Google Scholar 

  51. Miyazaki H, Yoshizawa Y. A reinvestigation of the validity of the indentation fracture (IF) method as applied to ceramics. J Eur Ceram Soc. 2017;37:4437–41.

    Article  Google Scholar 

  52. Miyazaki H, Yoshizawa Y. Correlation of the indentation fracture resistance measured using high-resolution optics and the fracture toughness obtained by the single edge-notched beam (SEPB) method for typical structural ceramics with various microstructures. Ceram Int. 2016;42:7873–6.

    Article  Google Scholar 

  53. Quinn GD, Bradt RC. On the Vickers indentation fracture toughness test. J Am Ceram Soc. 2007;90:673–80.

    Article  Google Scholar 

  54. Wang H, Isgro G, Pallav P, Feilzer AJ, Chao YL. Influence of test methods on fracture toughness of a dental porcelain and a soda lime glass. J Am Ceram Soc. 2005;88:2868–73.

    Article  Google Scholar 

  55. Newman JC, Raju IS. An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech. 1981;15:185–92.

    Article  Google Scholar 

  56. Strobl S, Supancic P, Lube T, Danzer R. Corrigendum to “surface crack in tension or in bending—a reassessment of the Newman and Raju formula in respect to fracture toughness measurements in brittle materials (vol 32, pg 1491, 2012)”. J Eur Ceram Soc. 2018;38:355–8.

    Article  Google Scholar 

  57. Strobl S, Supancic P, Lube T, Danzer R. Surface crack in tension or in bending—a reassessment of the Newman and Raju formula in respect to fracture toughness measurements in brittle materials. J Eur Ceram Soc. 2012;32:1491–501.

    Article  Google Scholar 

  58. Lube T, Rasche S, Nindhia TGT. A fracture toughness test using the ball-on-three-balls test. J Am Ceram Soc. 2016;99:249–56.

    Article  Google Scholar 

  59. Belli R, Wendler M, Petschelt A, Lube T, Lohbauer U. Fracture toughness testing of biomedical ceramic-based materials using beams, plates and discs. J Eur Ceram Soc. 2018;38:5533–44.

    Article  Google Scholar 

  60. Fett T. Influence of a finite notch root radius on fracture toughness. J Eur Ceram Soc. 2005;25:543–7.

    Article  Google Scholar 

  61. Kübler J. Fracture toughness using the SEVNB method: preliminary results. Ceram Eng Sci Proc. 1997;18:155–62.

    Article  Google Scholar 

  62. Turon-Vinas M, Anglada M. Fracture toughness of zirconia from a shallow notch produced by ultra-short pulsed laser ablation. J Eur Ceram Soc. 2014;34:3865–70.

    Article  Google Scholar 

  63. Turon-Vinas M, Anglada M. Assessment in Si3N4 of a new method for determining the fracture toughness from a surface notch micro-machined by ultra-short pulsed laser ablation. J Eur Ceram Soc. 2015;35:1737–41.

    Article  Google Scholar 

  64. Carlton HD, Elmer JW, Freeman DC, Schaeffer RD, Derkach O, Gallegos GF. Laser notching ceramics for reliable fracture toughness testing. J Eur Ceram Soc. 2016;36:227–34.

    Article  Google Scholar 

  65. Zhao W, Rao PG, Ling ZY. A new method for the preparation of ultra-sharp V-notches to measure fracture toughness in ceramics. J Eur Ceram Soc. 2014;34:4059–62.

    Article  Google Scholar 

  66. Belli R, Zorzin JI, Lohbauer U. Fracture toughness testing of dental materials: a critical evaluation. Curr Oral Health Rep. 2018;5:163–8.

    Article  Google Scholar 

  67. Bajaj D, Arola DD. On the R-curve behavior of human tooth enamel. Biomaterials. 2009;30:4037–46.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Evans AG. Perspectives on the development of high-toughness ceramics. J Am Ceram Soc. 1990;73:187.

    Article  Google Scholar 

  69. Evans AG, Cannon RM. Toughening of brittle solids by martensitic transformations. Acta Metall. 1986;34:761–800.

    Article  Google Scholar 

  70. Evans AG, Mcmeeking RM. On the toughening of ceramics by strong reinforcements. Acta Metall. 1986;34:2435–41.

    Article  Google Scholar 

  71. Evans AG, Heuer AH. Transformation toughening and its role in structural ceramic design. J Miner Met Mater Soc. 1982;35:A32.

    Google Scholar 

  72. Mcmeeking RM, Evans AG. Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc. 1982;65:242–6.

    Article  Google Scholar 

  73. Evans AG, Faber KT. Toughening of ceramics by circumferential microcracking. J Am Ceram Soc. 1981;64:394–8.

    Article  Google Scholar 

  74. Fünfschilling S, Fett T, Hoffmann J, Oberacker R, Özcoban H, Schneider GA, et al. Estimation of the high-temperature R-curve for ceramics from strength measurements including specimens with focused ion beam notches. J Am Ceram Soc. 2010;93:2411–4.

    Article  Google Scholar 

  75. Fett T, Munz D. R-curve for a lead zirconate titanate ceramic obtained from tensile strength tests with Knoop-damaged specimens. J Am Ceram Soc. 2000;83:3199–201.

    Article  Google Scholar 

  76. Munz D. What can we learn from R-curve measurements? J Am Ceram Soc. 2007;90:1–15.

    Article  Google Scholar 

  77. Burghard Z, Zimmermann A, Rodel J, Aldinger F, Lawn BR. Crack opening profiles of indentation cracks in normal and anomalous glasses. Acta Mater. 2004;52:293–7.

    Article  Google Scholar 

  78. Fett T, Munz D, Kounga Njiwa AB, Rödel J, Quinn GD. Bridging stresses in sintered reaction-bonded Si3N4 from COD measurements. J Eur Ceram Soc. 2005;25:29–36.

    Article  Google Scholar 

  79. Rödel J, Kelly JF, Lawn BR. In situ measurements of bridged crack interfaces in the scanning electron microscope. J Am Ceram Soc. 1990;73:3313–8.

    Article  Google Scholar 

  80. Seidel J, Rödel J. Measurement of crack tip toughness in alumina as a function of grain size. J Am Ceram Soc. 1997;80:433–8.

    Article  Google Scholar 

  81. Deubener J, Höland M, Höland W, Janakiraman N, Rheinberger VM. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements. J Mech Behav Biomed Mater. 2011;4:1291–8.

    Article  PubMed  Google Scholar 

  82. Knehans R, Steinbrech R. Memory effects of crack resistance during slow crack growth in notched Al2O3 bend specimens. J Mater Sci Lett. 1982;1:327–9.

    Article  Google Scholar 

  83. Fett T, Funfschilling S, Hoffmann MJ, Oberacker R. Different R-curves for two- and three-dimensional cracks. Int J Fract. 2008;153:153–9.

    Article  Google Scholar 

  84. Marschall DB, Swain MV. Crack resistance curves in magnesia-partially-stabilized zirconia. J Am Ceram Soc. 1988;71:399–407.

    Article  Google Scholar 

  85. Steinbrech R, Schmenkel O. Crack resistance curves for surface cracks in alumina. J Am Ceram Soc. 1988;71:C-271–3.

    Article  Google Scholar 

  86. Steinbrech RW, Reichl A, Schaarwachter W. R-curve behavior of long cracks in alumina. J Am Ceram Soc. 1990;73:2009–15.

    Article  Google Scholar 

  87. Kruzic JJ, Satet RL, Hoffmann MJ, Cannon RM, Ritchie RO. The utility of R-curves for understanding fracture toughness-strength relations in bridging ceramics. J Am Ceram Soc. 2008;91:1986–94.

    Article  Google Scholar 

  88. Funfschilling S, Fett T, Hoffmann MJ, Oberacker R, Schwind T, Wippler J, et al. Mechanisms of toughening in silicon nitrides: the roles of crack bridging and microstructure. Acta Mater. 2011;59:3978–89.

    Article  Google Scholar 

  89. Belli R, Wendler M, Cicconi MR, de Ligny D, Petschelt A, Werbach K, et al. Fracture anisotropy in texturized lithium disilicate glass-ceramics. J Non-Cryst Solids. 2018;481:457–69.

    Article  Google Scholar 

  90. Wendler M, Belli R, Schachtner M, Amberger G, Petschelt A, Fey T, et al. Resistance curves of short-fiber reinforced methacrylate-based biomedical composites. Eng Fract Mech. 2018;190:146–58.

    Article  Google Scholar 

  91. Tiu J, Belli R, Lohbauer U. Rising R-curves in particulate/fiber-reinforced resin composite layered systems. J Mech Behav Biomed Mater. 2019;103:103537.

    Article  PubMed  Google Scholar 

  92. Foulk-III JW, Johnson GC, Klein PA, Ritchie RO. On the toughening of brittle materials by grain bridging: promoting intergranular fracture through grain angle, strength and toughness. J Mech Phys Solids. 2008;56:2381–400.

    Article  Google Scholar 

  93. Fett T. New contributions to R-curves and bridging stresses—applications of weight functions. Karlsruhe: KIT Scientific; 2012.

    Google Scholar 

  94. Foulk JW, Cannon RM, Johnson GC, Klein PA, Ritchie RO. A micromechanical basis for partitioning the evolution of grain bridging in brittle materials. J Mech Phys Solids. 2007;55:719–43.

    Article  Google Scholar 

  95. Gallops S, Fett T, Kruzic JJ. Fatigue threshold R-curve behavior of grain bridging ceramics: role of grain size and grain-boundary adhesion. J Am Ceram Soc. 2011;94:2556–61.

    Article  Google Scholar 

  96. Kirsten J, Belli R, Wendler M, Petschelt A, Hurle K, Lohbauer U. Crack growth rates in lithium disilicates with bulk (mis)alignment of the Li2Si2O5 phase in the [001] direction. J Non-Cryst Solids. 2020;532:119877.

    Article  Google Scholar 

  97. Quinn JB, Sundar V, Lloyd IK. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent Mater. 2003;19:603–11.

    Article  PubMed  Google Scholar 

  98. Faber KT, Evans AG. 2 toughening mechanisms—crack deflection and microcracking. Am Ceram Soc Bull. 1981;60:382.

    Google Scholar 

  99. Casellas D, Cumbrera FL, Sanchez-Bajo F, Forsling W, Llanes L, Anglada M. On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures. J Eur Ceram Soc. 2001;21:765–77.

    Article  Google Scholar 

  100. Bechtle S, Fett T, Rizzi G, Habelitz S, Schneider G. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and in bending: application to dentin and enamel. J Mech Behav Biomed Mater. 2010;3:303–12.

    Article  PubMed  Google Scholar 

  101. Bechtle S, Habelitz S, Klocke A, Fett T, Schneider G. The fracture behaviour of dental enamel. Biomaterials. 2010;31:375–84.

    Article  PubMed  Google Scholar 

  102. Bechtle S, Fett T, Rizzi G, Habelitz S, Klocke A, Schneider GA. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch. Biomaterials. 2010;31:4238–47.

    Article  PubMed  Google Scholar 

  103. Bajaj D, Arola D. Role of prism decussation on fatigue crack growth and fracture of human enamel. Acta Biomater. 2009;5:3045–56.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gonzaga CC, Okada CY, Cesar PF, Miranda WG Jr, Yoshimura HN. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics. Dent Mater. 2009;25:1293–301.

    Article  PubMed  Google Scholar 

  105. Belli R, Wendler M, Petschelt A, Lohbauer U. Mixed-mode fracture toughness of texturized LS2 glass-ceramics using the three-point bending with eccentric notch test. Dent Mater. 2017;33:1473–7.

    Article  PubMed  Google Scholar 

  106. Freiman SW, Wiederhorn SM, J. MJJ. Environmentally enhanced fracture of glass: a historical perspective. J Am Ceram Soc. 2009;92:1371–82.

    Article  Google Scholar 

  107. Michalske TA, Freiman SW. A molecular mechanism for stress corrosion in vitreous silica. J Am Ceram Soc. 1983;66:284–8.

    Article  Google Scholar 

  108. Wiederhorn SM, Bolz LH. Stress corrosion and static fatigue of glass. J Am Ceram Soc. 1970;53:543–8.

    Article  Google Scholar 

  109. Wiederhorn SM. Influence of water vapor on crack propagation in soda-lime glass. J Am Ceram Soc. 1967;50:407–14.

    Article  Google Scholar 

  110. Munz D, Fett T. Ceramics. Berlin: Springer; 2001.

    Google Scholar 

  111. Wendler M, Belli R, Valladares D, Petschelt A, Lohbauer U. Chairside CAD/CAM materials. Part 3: cyclic fatigue parameters and lifetime predictions. Dent Mater. 2018;34:910–21.

    Article  PubMed  Google Scholar 

  112. Borba M, de Araújo MD, Fukushima KA, Yoshimura HN, Cesar PF, Griggs JA, et al. Effect of the microstructure on the lifetime of dental ceramics. Dent Mater. 2011;27:710–21.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Teixeira EC, Piascik JR, Stoner BR, Thompson JY. Dynamic fatigue and strength characterization of three ceramic materials. J Mater Sci Mater Med. 2007;18:1219–24.

    Article  PubMed  Google Scholar 

  114. Mitov G, Gessner J, Lohbauer U, Woll K, Muecklich F, Pospiech P. Subcritical crack growth behavior and life data analysis of two types of dental Y-TZP. Dent Mater. 2011;27:684–91.

    Article  PubMed  Google Scholar 

  115. Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24–34.

    Article  PubMed  Google Scholar 

  116. Griggs JA, Alaqeel SM, Zhang Y, Miller AW III, Cai Z. Effects of stress rate and calculation method on the subcritical crack growth parameters deduced from constant stress-rate flexural testing. Dent Mater. 2011;27:364–70.

    Article  PubMed  Google Scholar 

  117. Gonzaga CC, Cesar PF, Miranda WG Jr, Yoshimura HN. Slow crack growth and reliability of dental ceramics. Dent Mater. 2011;27:394–406.

    Article  PubMed  Google Scholar 

  118. Lohbauer U, Petschelt A, Greil P. Lifetime prediction of CAD/CAM dental ceramics. J Biomed Mater Res. 2002;63:780–5.

    Article  PubMed  Google Scholar 

  119. Ramos NC, Campos TMB, de La Paz IS, Machado JPB, Bottino MA, Cesar PF, et al. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016;32:870–8.

    Article  Google Scholar 

  120. Joshi GV, Duan Y, Della Bona A, Hill T, St. John K, Griggs JA. Contributions of stress corrosion and cyclic fatigue to subcritical crack growth in a dental glass-ceramic. Dent Mater. 2014;30:884–90.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Belli R, Zorzin JI, Petschelt A, Lohbauer U, Rocca GT. Crack growth behavior of a biomedical polymer-ceramic interpenetrating scaffolds composite in the subcritical regimen. Eng Fract Mech. 2020;231:107014.

    Article  Google Scholar 

  122. Barlet M, Delaye JM, Boizot B, Bonamy D, Caraballo R, Peuget S, et al. From network depolymerization to stress corrosion cracking in sodium-borosilicate glasses: effect of the chemical composition. J Non-Cryst Solids. 2016;450:174–84.

    Article  Google Scholar 

  123. Belli R, Wendler M, Zorzin JI, Petschelt A, Tanaka CB, Meira J, et al. Descriptions of crack growth behaviors in glass-ZrO2 bilayers under thermal residual stresses. Dent Mater. 2016;32:1165–76.

    Article  PubMed  Google Scholar 

  124. Pinto MM, Cesar PF, Rosa V, Yoshimura HN. Influence of slow crack growth of dental porcelains. Dent Mater. 2008;24:814–23.

    Article  PubMed  Google Scholar 

  125. Charles RJ. Dynamic fatigue of glass. J Appl Phys. 1958;29:1657–61.

    Article  Google Scholar 

  126. Fett T, Martin G, Munz D, Thun G. Determination of d a/d N-ΔK1 curves for small cracks in alumina in alternating bending tests. J Mater Sci. 1991;26:3320–8.

    Article  Google Scholar 

  127. Thoman DR, Bain LJ, Antle CE. Inferences on the parameters of the Weibull distribution. Technometrics. 1969;11:445–60.

    Article  Google Scholar 

  128. Evans AG, Fuller ER. Crack-propagation in ceramic materials under cyclic loading conditions. Metall Mater Trans B. 1974;5:27–33.

    Article  Google Scholar 

  129. Lawn BR. Partial cone crack formation in a brittle material loaded with a sliding spherical indenter. Proc R Soc Lond. 1967;299:307–16.

    Google Scholar 

  130. Ren LL, Zhang Y. Sliding contact fracture of dental ceramics: principles and validation. Acta Biomater. 2014;10:3243–53.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chai H. Multi-crack analysis of hydraulically pumped cone fracture in brittle solids under cyclic spherical contact. Int J Fract. 2007;143:1–14.

    Article  Google Scholar 

  132. Zhang Y, Sailer I, Lawn BR. Fatigue of dental ceramics. J Dent. 2013;41:1135–47.

    Article  PubMed  Google Scholar 

  133. Wendler M, Kaizer MR, Belli R, Lohbauer U, Zhang Y. Sliding contact wear and subsurface damage of CAD/CAM materials against zirconia. Dental Mater. 2020;36(3):387–401.

    Article  Google Scholar 

  134. Jacobs DS, Chen IW. Cyclic fatigue in ceramics—a balance between crack shielding accumulation and degradation. J Am Ceram Soc. 1995;78:513–20.

    Article  Google Scholar 

  135. Fett T, Kraft O, Munz D. Fatigue failure of coarse-grained alumina under contact loading. Mater Werkst. 2005;26:163–70.

    Article  Google Scholar 

  136. Fett T, Munz D. Differences between static and cyclic fatigue effects in alumina. J Mater Sci Lett. 1993;12:352–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lohbauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lohbauer, U., Belli, R. (2022). The Mechanics of Fracture in Dental Ceramics. In: Dental Ceramics. Springer, Cham. https://doi.org/10.1007/978-3-030-94687-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94687-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94686-9

  • Online ISBN: 978-3-030-94687-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics