Skip to main content

Protein Requirements in Inherited Metabolic Diseases

  • Chapter
  • First Online:
Nutrition Management of Inherited Metabolic Diseases
  • 991 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neelima SR, Rajput YS, Mann B. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: a review. Dairy Sci Technol. 2013;93(1):21–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fouillet H, Mariotti F, Gaudichon C, Bos C, Tome D. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr. 2001;132(1):125–33.

    Article  Google Scholar 

  3. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997;94(26):14930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luiking YC, Deutz NE, Jakel M, Soeters PB. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans. J Nutr. 2005;135(5):1080–7.

    Article  CAS  PubMed  Google Scholar 

  5. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001;280(2):E340–8.

    Article  CAS  PubMed  Google Scholar 

  6. Daenzer M, Petzke KJ, Bequette BJ, Metges CC. Whole-body nitrogen and splanchnic amino acid metabolism differ in rats fed mixed diets containing casein or its corresponding amino acid mixture. J Nutr. 2001;131(7):1965–72.

    Article  CAS  PubMed  Google Scholar 

  7. Monchi M, Rerat AA. Comparison of net protein utilization of milk protein mild enzymatic hydrolysates and free amino acid mixtures with a close pattern in the rat. JPEN J Parenter Enteral Nutr. 1993;17(4):355–63.

    Article  CAS  PubMed  Google Scholar 

  8. Allen JR, Baur LA, Waters DL, Humphries IR, Allen BJ, Roberts DC, et al. Body protein in prepubertal children with phenylketonuria. Eur J Clin Nutr. 1996;50(3):178–86.

    CAS  PubMed  Google Scholar 

  9. Jones BJ, Lees R, Andrews J, Frost P, Silk DB. Comparison of an elemental and polymeric enteral diet in patients with normal gastrointestinal function. Gut. 1983;24(1):78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gropper SS, Acosta PB. Effect of simultaneous ingestion of L-amino acids and whole protein on plasma amino acid and urea nitrogen concentrations in humans. JPEN J Parenter Enteral Nutr. 1991;15(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  11. Herrmann ME, Brosicke HG, Keller M, Monch E, Helge H. Dependence of the utilization of a phenylalanine-free amino acid mixture on different amounts of single dose ingested. A case report. Eur J Pediatr. 1994;153(7):501–3.

    Article  CAS  PubMed  Google Scholar 

  12. Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011;93(5):997–1005.

    Article  CAS  PubMed  Google Scholar 

  13. Burks W, Jones SM, Berseth CL, Harris C, Sampson HA, Scalabrin DM. Hypoallergenicity and effects on growth and tolerance of a new amino acid-based formula with docosahexaenoic acid and arachidonic acid. J Pediatr. 2008;153(2):266–71.

    Article  CAS  PubMed  Google Scholar 

  14. Aggett PJ, Bresson J, Haschke F, Hernell O, Koletzko B, Lafeber HN, et al. Recommended dietary allowances (RDAs), recommended dietary intakes (RDIs), recommended nutrient intakes (RNIs), and population reference intakes (PRIs) are not “recommended intakes”. J Pediatr Gastroenterol Nutr. 1997;25(2):236–41.

    Article  CAS  PubMed  Google Scholar 

  15. Joint WHO, FAO UNU. Expert consultation. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser. 2007;935:1–265.

    Google Scholar 

  16. Ten Have GA, Engelen MP, Luiking YC, Deutz NE. Absorption kinetics of amino acids, peptides, and intact proteins. Int J Sport Nutr Exerc Metab. 2007;17(Suppl):S23–36.

    Article  PubMed  Google Scholar 

  17. Waterlow JC. Protein turnover with special reference to man. Q J Exp Physiol. 1984;69(3):409–38.

    Article  CAS  PubMed  Google Scholar 

  18. Young VR, Steffee WP, Pencharz PB, Winterer JC, Scrimshaw NS. Total human body protein synthesis in relation to protein requirements at various ages. Nature. 1975;253(5488):192–4.

    Article  CAS  PubMed  Google Scholar 

  19. Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ. Body composition during the first 2 years of life: an updated reference. Pediatr Res. 2000;47(5):578–85.

    Article  CAS  PubMed  Google Scholar 

  20. Trumbo P, Schlicker S, Yates AA, Poos M. Food, Nutrition Board of the Institute of Medicine TNA. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–30.

    Article  PubMed  Google Scholar 

  21. Borsheim E, Tipton KD, Wolf SE, Wolfe RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002;283(4):E648–57.

    Article  CAS  PubMed  Google Scholar 

  22. Wilson J, Wilson GJ. Contemporary issues in protein requirements and consumption for resistance trained athletes. J Int Soc Sports Nutr. 2006;3:7–27.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Institute of Medicine Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Washington, DC: N.A. Press; 2002.

    Google Scholar 

  24. Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001;131(3):856S–60S.

    Article  CAS  PubMed  Google Scholar 

  25. Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH, Senden JM, Gorselink M, et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab. 2005;288(4):E645–53.

    Article  CAS  PubMed  Google Scholar 

  26. Mariotti F, Mahe S, Luengo C, Benamouzig R, Tome D. Postprandial modulation of dietary and whole-body nitrogen utilization by carbohydrates in humans. Am J Clin Nutr. 2000;72(4):954–62.

    Article  CAS  PubMed  Google Scholar 

  27. Gaudichon C, Mahe S, Benamouzig R, Luengo C, Fouillet H, Dare S, et al. Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans. J Nutr. 1999;129(4):890–5.

    Article  CAS  PubMed  Google Scholar 

  28. Welle S, Matthews DE, Campbell RG, Nair KS. Stimulation of protein turnover by carbohydrate overfeeding in men. Am J Phys. 1989;257(3 Pt 1):E413–7.

    CAS  Google Scholar 

  29. Pratt EL, Snyderman SE, Cheung MW, Norton P, Holt LE Jr, Hansen AE, et al. The threonine requirement of the normal infant. J Nutr. 1955;56(2):231–51.

    Article  CAS  PubMed  Google Scholar 

  30. Rose WC, Wixom RL. The amino acid requirements of man. XIV. The sparing effect of tyrosine on the phenylalanine requirement. J Biol Chem. 1955;217(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas JA, Bernstein LE, Greene CL, Koeller DM. Apparent decreased energy requirements in children with organic acidemias: preliminary observations. J Am Diet Assoc. 2000;100(9):1074–6.

    Article  CAS  PubMed  Google Scholar 

  32. Layman DK. Dietary guidelines should reflect new understandings about adult protein needs. Nutr Metab (Lond). 2009;6:12.

    Article  CAS  Google Scholar 

  33. Mamerow MM, Mettler JA, English KL, Casperson SL, Arentson-Lantz E, Sheffield-Moore M, et al. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr. 2014;144(6):876–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. MacDonald A, Rylance G, Davies P, Asplin D, Hall SK, Booth IW. Administration of protein substitute and quality of control in phenylketonuria: a randomized study. J Inherit Metab Dis. 2003;26(4):319–26.

    Article  CAS  PubMed  Google Scholar 

  35. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12(1):86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paddon-Jones D, Leidy H. Dietary protein and muscle in older persons. Curr Opin Clin Nutr Metab Care. 2014;17(1):5–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. MacDonald A, Rylance G, Hall SK, Asplin D, Booth IW. Factors affecting the variation in plasma phenylalanine in patients with phenylketonuria on diet. Arch Dis Child. 1996;74(5):412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Acosta PB. Recommendations for protein and energy intakes by patients with phenylketonuria. Eur J Pediatr. 1996;155(Suppl 1):S121–4.

    Article  PubMed  Google Scholar 

  39. Metges CC, El-Khoury AE, Selvaraj AB, Tsay RH, Atkinson A, Regan MM, et al. Kinetics of L-[1-(13)C]leucine when ingested with free amino acids, unlabeled or intrinsically labeled casein. Am J Physiol Endocrinol Metab. 2000;278(6):E1000–9.

    Article  CAS  PubMed  Google Scholar 

  40. Elango R, Ball RO, Pencharz PB. Indicator amino acid oxidation: concept and application. J Nutr. 2008;138(2):243–6.

    Article  CAS  PubMed  Google Scholar 

  41. Elango R, Ball RO, Pencharz PB. Recent advances in determining protein and amino acid requirements in humans. Br J Nutr. 2012;108(Suppl 2):S22–30.

    Article  CAS  PubMed  Google Scholar 

  42. Humayun MA, Elango R, Ball RO, Pencharz PB. Reevaluation of the protein requirement in young men with the indicator amino acid oxidation technique. Am J Clin Nutr. 2007;86(4):995–1002.

    Article  CAS  PubMed  Google Scholar 

  43. Elango R, Humayun MA, Ball RO, Pencharz PB. Protein requirement of healthy school-age children determined by the indicator amino acid oxidation method. Am J Clin Nutr. 2011;94(6):1545–52.

    Article  CAS  PubMed  Google Scholar 

  44. van Rijn M, Hoeksma M, Sauer P, Szczerbak B, Gross M, Reijngoud DJ, et al. Protein metabolism in adult patients with phenylketonuria. Nutrition. 2007;23(6):445–53.

    Article  PubMed  CAS  Google Scholar 

  45. Riazi R, Rafii M, Clarke JT, Wykes LJ, Ball RO, Pencharz PB. Total branched-chain amino acids requirement in patients with maple syrup urine disease by use of indicator amino acid oxidation with L-[1-13C]phenylalanine. Am J Physiol Endocrinol Metab. 2004;287(1):E142–9.

    Article  CAS  PubMed  Google Scholar 

  46. Courtney-Martin G, Bross R, Raffi M, Clarke JT, Ball RO, Pencharz PB. Phenylalanine requirement in children with classical PKU determined by indicator amino acid oxidation. Am J Physiol Endocrinol Metab. 2002;283(6):E1249–56.

    Article  CAS  PubMed  Google Scholar 

  47. Fulgoni VL 3rd. Current protein intake in America: analysis of the National Health and Nutrition Examination Survey, 2003-2004. Am J Clin Nutr. 2008;87(5):1554S–7S.

    Article  CAS  PubMed  Google Scholar 

  48. Panel on Dietetic Products NaA. Scientific opinion on dietary reference values for protein. Eur Food Saf Authority. 2012;10(2):66.

    Google Scholar 

  49. Humphrey M, Truby H, Boneh A. New ways of defining protein and energy relationships in inborn errors of metabolism. Mol Genet Metab. 2014;112(4):247–58.

    Article  CAS  PubMed  Google Scholar 

  50. Acosta PB. Nutrition management of patients with inherited metabolic disorders. Sudbury: Jones and Bartlett Publishers, LLC; 2010. 476 p.

    Google Scholar 

  51. Acosta PB, Yannicelli S. Nutrition protocols updated for the US. 4th ed. A. Laboratories: Columbus; 2001.

    Google Scholar 

  52. Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16(2):188–200.

    Article  CAS  PubMed  Google Scholar 

  53. Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, Ogata B, et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med. 2014;16(2):121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Acosta PB, Yannicelli S. Protein intake affects phenylalanine requirements and growth of infants with phenylketonuria. Acta Paediatr Suppl. 1994;83:66–7.

    Article  Google Scholar 

  55. Turki A, Ueda K, Cheng B, Giezen A, Salvarinova R, Stockler-Ipsiroglu S, et al. The indicator amino acid oxidation method with the use of l-[1-13C]leucine suggests a higher than currently recommended protein requirement in children with phenylketonuria. J Nutr. 2017;147(2):211–7.

    Article  PubMed  CAS  Google Scholar 

  56. Yannicelli S, Acosta PB, Velazquez A, Bock HG, Marriage B, Kurczynski TW, et al. Improved growth and nutrition status in children with methylmalonic or propionic acidemia fed an elemental medical food. Mol Genet Metab. 2003;80(1–2):181–8.

    Article  CAS  PubMed  Google Scholar 

  57. van der Meer SB, Poggi F, Spada M, Bonnefont JP, Ogier H, Hubert P, et al. Clinical outcome of long-term management of patients with vitamin B12-unresponsive methylmalonic acidemia. J Pediatr. 1994;125(6 Pt 1):903–8.

    Article  PubMed  Google Scholar 

  58. Yannicelli S. Nutrition therapy of organic acidaemias with amino acid-based formulas: emphasis on methylmalonic and propionic acidaemia. J Inherit Metab Dis. 2006;29(2–3):281–7.

    Article  CAS  PubMed  Google Scholar 

  59. Hanley WB, Linsao L, Davidson W, Moes CA. Malnutrition with early treatment of phenylketonuria. Pediatr Res. 1970;4(4):318–27.

    Article  CAS  PubMed  Google Scholar 

  60. Dhondt JL, Largilliere C, Moreno L, Farriaux JP. Physical growth in patients with phenylketonuria. J Inherit Metab Dis. 1995;18(2):135–7.

    Article  CAS  PubMed  Google Scholar 

  61. Verkerk PH, van Spronsen FJ, Smit GP, Sengers RC. Impaired prenatal and postnatal growth in Dutch patients with phenylketonuria. The National PKU Steering Committee. Arch Dis Child. 1994;71(2):114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Baulny HO, Benoist JF, Rigal O, Touati G, Rabier D, Saudubray JM. Methylmalonic and propionic acidaemias: management and outcome. J Inherit Metab Dis. 2005;28(3):415–23.

    Article  CAS  PubMed  Google Scholar 

  63. van Spronsen FJ, van Rijn M, Dorgelo B, Hoeksma M, Bosch AM, Mulder MF, et al. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU. J Inherit Metab Dis. 2009;32(1):27–31.

    Article  PubMed  CAS  Google Scholar 

  64. Moller HE, Ullrich K, Weglage J. In vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr. 2000;159(Suppl 2):S121–5.

    Article  CAS  PubMed  Google Scholar 

  65. Weglage J, Wiedermann D, Denecke J, Feldmann R, Koch HG, Ullrich K, et al. Individual blood-brain barrier phenylalanine transport in siblings with classical phenylketonuria. J Inherit Metab Dis. 2002;25(6):431–6.

    Article  CAS  PubMed  Google Scholar 

  66. Evans S, Alroqaiba N, Daly A, Neville C, Davies P, Macdonald A. Feeding difficulties in children with inherited metabolic disorders: a pilot study. J Hum Nutr Diet. 2012;25(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  67. Newberry RE. Infant formula act of 1980. J Assoc Off Anal Chem. 1982;65(6):1472–3.

    CAS  PubMed  Google Scholar 

  68. Pencharz PB. Protein and energy requirements for ‘optimal’ catch-up growth. Eur J Clin Nutr. 2010;64(Suppl 1):S5–7.

    Article  PubMed  Google Scholar 

  69. Evans M, Truby H, Boneh A. The relationship between dietary intake, growth and body composition in phenylketonuria. Mol Genet Metab. 2007;122(1–2):36–42.

    Google Scholar 

  70. Hoeksma M, Van Rijn M, Verkerk PH, Bosch AM, Mulder MF, de Klerk JB, et al. The intake of total protein, natural protein and protein substitute and growth of height and head circumference in Dutch infants with phenylketonuria. J Inherit Metab Dis. 2005;28(6):845–54.

    Article  CAS  PubMed  Google Scholar 

  71. Touati G, Valayannopoulos V, Mention K, de Lonlay P, Jouvet P, Depondt E, et al. Methylmalonic and propionic acidurias: management without or with a few supplements of specific amino acid mixture. J Inherit Metab Dis. 2006;29(2–3):288–98.

    Article  CAS  PubMed  Google Scholar 

  72. Burlina A, Cazzorla C, Zanonato E, Viggiano E, Fasan I, Polo G. Clinical experience with N-carbamylglutamate in a single-centre cohort of patients with propionic and methylmalonic aciduria. Mol Genet Metab Rep. 2016;8:34–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Trefz FK, Burton BK, Longo N, Casanova MM, Gruskin DJ, Dorenbaum A, et al. Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. J Pediatr. 2009;154(5):700–7.

    Article  CAS  PubMed  Google Scholar 

  74. Scaglia F, Carter S, O'Brien WE, Lee B. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients. Mol Genet Metab. 2004;81(Suppl 1):S79–85.

    Article  CAS  PubMed  Google Scholar 

  75. Phillips SM, Moore DR, Tang JE. A critical examination of dietary protein requirements, benefits, and excesses in athletes. Int J Sport Nutr Exerc Metab. 2007;17(Suppl):S58–76.

    Article  CAS  PubMed  Google Scholar 

  76. Phillips SM. Protein requirements and supplementation in strength sports. Nutrition. 2004;20(7–8):689–95.

    Article  CAS  PubMed  Google Scholar 

  77. Bandegan A, Courtney-Martin G, Rafii M, Pencharz PB, Lemon PWR. Indicator amino acid oxidation protein requirement estimate in endurance-trained men 24 h postexercise exceeds both the EAR and current athlete guidelines. Am J Physiol Endocrinol Metab. 2019;316(5):E741–E8.

    Article  CAS  PubMed  Google Scholar 

  78. Rocha JC, van Dam E, Ahring K, Almeida MF, Belanger-Quintana A, Dokoupil K, et al. A series of three case reports in patients with phenylketonuria performing regular exercise: first steps in dietary adjustment. J Pediatr Endocrinol Metab. 2019;32(6):635–41.

    Article  PubMed  Google Scholar 

  79. Mazzola PN, Teixeira BC, Schirmbeck GH, Reischak-Oliveira A, Derks TGJ, van Spronsen FJ, et al. Acute exercise in treated phenylketonuria patients: physical activity and biochemical response. Mol Genet Metab Rep. 2015;5:55–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jani R, Coakley K, Douglas T, Singh R. Protein intake and physical activity are associated with body composition in individuals with phenylalanine hydroxylase deficiency. Mol Genet Metab. 2017;121(2):104–10.

    Article  CAS  PubMed  Google Scholar 

  81. Daly A, Pinto A, Evans S, Almeida MF, Assoun M, Belanger-Quintana A, et al. Dietary practices in propionic acidemia: a European survey. Mol Genet Metab Rep. 2017;13:83–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Adam S, Almeida MF, Assoun M, Baruteau J, Bernabei SM, Bigot S, et al. Dietary management of urea cycle disorders: European practice. Mol Genet Metab. 2013;110(4):439–45.

    Article  CAS  PubMed  Google Scholar 

  83. Walter JH, MacDonald A. The use of amino acid supplements in inherited metabolic disease. J Inherit Metab Dis. 2006;29(2–3):279–80.

    Article  CAS  PubMed  Google Scholar 

  84. Aguiar A, Ahring K, Almeida MF, Assoun M, Belanger Quintana A, Bigot S, et al. Practices in prescribing protein substitutes for PKU in Europe: no uniformity of approach. Mol Genet Metab. 2015;115(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  85. Acosta PB, Yannicelli S, Ryan AS, Arnold G, Marriage BJ, Plewinska M, et al. Nutritional therapy improves growth and protein status of children with a urea cycle enzyme defect. Mol Genet Metab. 2005;86(4):448–55.

    Article  CAS  PubMed  Google Scholar 

  86. Singh RH. Nutritional management of patients with urea cycle disorders. J Inherit Metab Dis. 2007;30(6):880–7.

    Article  CAS  PubMed  Google Scholar 

  87. Luder AS, Yannicelli S, Green CL. Normal growth and development with unrestricted protein intake after severe infantile propionic acidaemia. J Inherit Metab Dis. 1989;12(3):307–11.

    Article  CAS  PubMed  Google Scholar 

  88. Shkurko T. Metabolic university. MetEd: Denver; 2020.

    Google Scholar 

  89. Baumgartner MR, Horster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Haberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision. J Inherit Metab Dis. 2019;42(6):1192–230.

    Article  PubMed  Google Scholar 

  91. Jurecki E, Ueda K, Frazier D, Rohr F, Thompson A, Hussa C, et al. Nutrition management guideline for propionic acidemia: an evidence- and consensus-based approach. Mol Genet Metab. 2019;126(4):341–54.

    Article  CAS  PubMed  Google Scholar 

  92. Mobarak A, Dawoud H, Nofal H, Zoair A. Clinical course and nutritional management of propionic and methylmalonic acidemias. J Nutr Metab. 2020;2020:8489707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Manoli I, Myles JG, Sloan JL, Carrillo-Carrasco N, Morava E, Strauss KA, et al. A critical reappraisal of dietary practices in methylmalonic acidemia raises concerns about the safety of medical foods. Part 2: cobalamin C deficiency. Genet Med. 2016;18(4):396–404.

    Article  CAS  PubMed  Google Scholar 

  94. Molema F, Gleich F, Burgard P, van der Ploeg AT, Summar ML, Chapman KA, et al. Evaluation of dietary treatment and amino acid supplementation in organic acidurias and urea-cycle disorders: on the basis of information from a European multicenter registry. J Inherit Metab Dis. 2019;42(6):1162–75.

    Article  CAS  PubMed  Google Scholar 

  95. Bernstein LE, Burns C, Drumm M, Gaughan S, Sailer M, Baker PR, 2nd. Impact on isoleucine and valine supplementation when decreasing use of medical food in the nutritional management of methylmalonic acidemia. Nutrients. 2020;12(2).

    Google Scholar 

  96. Molema F, Gleich F, Burgard P, van der Ploeg AT, Summar ML, Chapman KA, et al. Decreased plasma l-arginine levels in organic acidurias (MMA and PA) and decreased plasma branched-chain amino acid levels in urea cycle disorders as a potential cause of growth retardation: options for treatment. Mol Genet Metab. 2019;126(4):397–405.

    Article  CAS  PubMed  Google Scholar 

  97. Pencharz PB. Assessment of protein nutritional status in children. Pediatr Blood Cancer. 2008;50(2 Suppl):445–6. discussion 51

    Article  PubMed  Google Scholar 

  98. Evans DC, Corkins MR, Malone A, Miller S, Mogensen KM, Guenter P, et al. The use of visceral proteins as nutrition markers: an ASPEN position paper. Nutr Clin Pract. 2021;36(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  99. Rocha JC, Almeida MF, Carmona C, Cardoso ML, Borges N, Soares I, et al. The use of prealbumin concentration as a biomarker of nutritional status in treated phenylketonuric patients. Ann Nutr Metab. 2010;56(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  100. Arnold GL, Vladutiu CJ, Kirby RS, Blakely EM, Deluca JM. Protein insufficiency and linear growth restriction in phenylketonuria. J Pediatr. 2002;141(2):243–6.

    Article  CAS  PubMed  Google Scholar 

  101. Aldamiz-Echevarria L, Bueno MA, Couce ML, Lage S, Dalmau J, Vitoria I, et al. Anthropometric characteristics and nutrition in a cohort of PAH-deficient patients. Clin Nutr. 2014;33(4):702–17.

    Article  PubMed  Google Scholar 

  102. Dejong CH, van de Poll MC, Soeters PB, Jalan R, Olde Damink SW. Aromatic amino acid metabolism during liver failure. J Nutr. 2007;137(6 Suppl 1):1579S–85S; discussion 97S–98S

    Article  CAS  PubMed  Google Scholar 

  103. Rossi-Fanelli F, Angelico M, Cangiano C, Cascino A, Capocaccia R, DeConciliis D, et al. Effect of glucose and/or branched chain amino acid infusion on plasma amino acid imbalance in chronic liver failure. JPEN J Parenter Enteral Nutr. 1981;5(5):414–9.

    Article  CAS  PubMed  Google Scholar 

  104. Ceballos I, Chauveau P, Guerin V, Bardet J, Parvy P, Kamoun P, et al. Early alterations of plasma free amino acids in chronic renal failure. Clin Chim Acta. 1990;188(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  105. Chin SE, Shepherd RW, Thomas BJ, Cleghorn GJ, Patrick MK, Wilcox JA, et al. Nutritional support in children with end-stage liver disease: a randomized crossover trial of a branched-chain amino acid supplement. Am J Clin Nutr. 1992;56(1):158–63.

    Article  CAS  PubMed  Google Scholar 

  106. Mager DR, Wykes LJ, Roberts EA, Ball RO, Pencharz PB. Mild-to-moderate chronic cholestatic liver disease increases leucine oxidation in children. J Nutr. 2006;136(4):965–70.

    Article  CAS  PubMed  Google Scholar 

  107. Hendriks FK, Smeets JSJ, Broers NJH, van Kranenburg JMX, van der Sande FM, Kooman JP, et al. End-stage renal disease patients lose a substantial amount of amino acids during hemodialysis. J Nutr. 2020;150(5):1160–6.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Carayol M, Licaj I, Achaintre D, Sacerdote C, Vineis P, Key TJ, et al. Reliability of serum metabolites over a two-year period: a targeted metabolomic approach in fasting and non-fasting Samples from EPIC. PLoS One. 2015;10(8):e0135437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Boneh A. Dietary protein in urea cycle defects: how much? Which? How? Mol Genet Metab. 2014;113(1–2):109–12.

    Article  CAS  PubMed  Google Scholar 

  110. Hook D, Diaz GA, Lee B, Bartley J, Longo N, Berquist W, et al. Protein and calorie intakes in adult and pediatric subjects with urea cycle disorders participating in clinical trials of glycerol phenylbutyrate. Mol Genet Metab Rep. 2016;6:34–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Yannicelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yannicelli, S. (2022). Protein Requirements in Inherited Metabolic Diseases. In: Bernstein, L.E., Rohr, F., van Calcar, S. (eds) Nutrition Management of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-94510-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94510-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94509-1

  • Online ISBN: 978-3-030-94510-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics