Skip to main content
  • 1007 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abily-Donval L, Torre S, Samson A, Sudrie-Arnaud B, Acquaviva C, Guerrot AM, et al. Methylmalonyl-CoA epimerase deficiency mimicking propionic aciduria. Int J Mol Sci. 2017;18(11):2294.

    Article  PubMed Central  CAS  Google Scholar 

  2. Heuberger K, Bailey HJ, Burda P, Chaikuad A, Krysztofinska E, Suormala T, et al. Genetic, structural, and functional analysis of pathogenic variations causing methylmalonyl-CoA epimerase deficiency. Biochim Biophys Acta Mol basis Dis. 2019;1865(6):1265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Waters PJ, Thuriot F, Clarke JT, Gravel S, Watkins D, Rosenblatt DS, et al. Methylmalonyl-coA epimerase deficiency: a new case, with an acute metabolic presentation and an intronic splicing mutation in the MCEE gene. Mol Genet Metab Rep. 2016;9:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sniderman LC, Lambert M, Giguere R, Auray-Blais C, Lemieux B, Laframboise R, et al. Outcome of individuals with low-moderate methylmalonic aciduria detected through a neonatal screening program. J Pediatr. 1999;134(6):675–80.

    Article  CAS  PubMed  Google Scholar 

  5. Yorifuji T, Kawai M, Muroi J, Mamada M, Kurokawa K, Shigematsu Y, et al. Unexpectedly high prevalence of the mild form of propionic acidemia in Japan: presence of a common mutation and possible clinical implications. Hum Genet. 2002;111(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  6. Rafique M. Propionic acidaemia: demographic characteristics and complications. J Pediatr Endocrinol Metab. 2013;26(5–6):497–501.

    PubMed  Google Scholar 

  7. Ensenauer R, Vockley J, Willard JM, Huey JC, Sass JO, Edland SD, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ensenauer R, Fingerhut R, Maier EM, Polanetz R, Olgemoller B, Roschinger W, et al. Newborn screening for isovaleric acidemia using tandem mass spectrometry: data from 1.6 million newborns. Clin Chem. 2011;57(4):623–6.

    Article  CAS  PubMed  Google Scholar 

  9. Nyhan WL, Barshop BA, Ozand PT. Propionic acidemia, methylmalonic acidemia, isovaleric acidemia. In: Atlas of metabolic disease, 2nd ed. London: Hodder Arnold; 2005.

    Google Scholar 

  10. Dionisi-Vici C, Deodato F, Roschinger W, Rhead W, Wilcken B. ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis. 2006;29(2–3):383–9.

    Article  CAS  PubMed  Google Scholar 

  11. Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cappuccio G, Atwal PS, Donti TR, Ugarte K, Merchant N, Craigen WJ, et al. Expansion of the phenotypic spectrum of propionic acidemia with isolated elevated propionylcarnitine. JIMD Rep. 2017;35:33–7.

    Article  PubMed  Google Scholar 

  13. McCrory NM, Edick MJ, Ahmad A, Lipinski S, Scott Schwoerer JA, Zhai S, et al. Comparison of methods of initial ascertainment in 58 cases of propionic acidemia enrolled in the inborn errors of metabolism information system reveals significant differences in time to evaluation and symptoms at presentation. J Pediatr. 2017;180:200–5 e8.

    Article  PubMed  Google Scholar 

  14. Monostori P, Klinke G, Richter S, Barath A, Fingerhut R, Baumgartner MR, et al. Simultaneous determination of 3-hydroxypropionic acid, methylmalonic acid and methylcitric acid in dried blood spots: second-tier LC-MS/MS assay for newborn screening of propionic acidemia, methylmalonic acidemias and combined remethylation disorders. PLoS One. 2017;12(9):e0184897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Peng G, Shen P, Gandotra N, Le A, Fung E, Jelliffe-Pawlowski L, et al. Combining newborn metabolic and DNA analysis for second-tier testing of methylmalonic acidemia. Genet Med. 2019;21(4):896–903.

    Article  CAS  PubMed  Google Scholar 

  16. Ogier de Baulny H, Saudubray JM. Branched-chain organic acidurias. Semin Neonatol. 2002;7(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  17. Tanpaiboon P. Methylmalonic acidemia (MMA). Mol Genet Metab. 2005;85(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  18. Soyucen E, Demirci E, Aydin A. Outpatient treatment of propionic acidemia-associated hyperammonemia with N-carbamoyl-L-glutamate in an infant. Clin Ther. 2010;32(4):710–3.

    Article  CAS  PubMed  Google Scholar 

  19. Ogier de Baulny H, Dionisi-Vici C, Wendel U. Branched-chain organic acidurias/acidemias. In: Saudubray JM, editor. Inborn metabolic diseases. 5th ed. Heidelberg: Springer-Verlag; 2012.

    Google Scholar 

  20. Dionisi-Vici C, Ogier de Baulny H. Emergency treatment. In: Saudubray J-M, van den Berghe G, Walter JH, editors. Inborn metabolic diseases diagnosis and treatment. Berlin: Springer-Verlag; 2012. p. 104–11.

    Google Scholar 

  21. Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C. Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet. 2006;142C(2):104–12.

    Article  CAS  PubMed  Google Scholar 

  22. Bernheim S, Deschenes G, Schiff M, Cussenot I, Niel O. Antenatal nephromegaly and propionic acidemia: a case report. BMC Nephrol. 2017;18(1):110.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Erdem E, Cayonu N, Uysalol E, Yildirmak ZY. Chronic intermittent form of isovaleric acidemia mimicking diabetic ketoacidosis. J Pediatr Endocrinol Metab. 2010;23(5):503–5.

    Article  PubMed  Google Scholar 

  24. Dweikat IM, Naser EN, Abu Libdeh AI, Naser OJ, Abu Gharbieh NN, Maraqa NF, et al. Propionic acidemia mimicking diabetic ketoacidosis. Brain Dev. 2011;33(5):428–31.

    Article  PubMed  Google Scholar 

  25. Joshi R, Phatarpekar A. Propionic acidemia presenting as diabetic ketoacidosis. Indian Pediatr. 2011;48(2):164–5.

    PubMed  Google Scholar 

  26. Guven A, Cebeci N, Dursun A, Aktekin E, Baumgartner M, Fowler B. Methylmalonic acidemia mimicking diabetic ketoacidosis in an infant. Pediatr Diabetes. 2012;13(6):e22–5.

    Article  CAS  PubMed  Google Scholar 

  27. Fraser JL, Venditti CP. Methylmalonic and propionic acidemias: clinical management update. Curr Opin Pediatr. 2016;28(6):682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao Z, Chu CC, Chang MY, Chang HT, Hsu YL. Management of adult-onset methylmalonic acidemia with hypotonia and acute respiratory failure: a case report. Medicine (Baltimore). 2018;97(25):e11162.

    Article  Google Scholar 

  29. Riemersma M, Hazebroek MR, Helderman-van den Enden A, Salomons GS, Ferdinandusse S, Brouwers M, et al. Propionic acidemia as a cause of adult-onset dilated cardiomyopathy. Eur J Hum Genet. 2017;25(11):1195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Keyzer Y, Valayannopoulos V, Benoist JF, Batteux F, Lacaille F, Hubert L, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.

    Article  PubMed  CAS  Google Scholar 

  31. Scholl-Burgi S, Haberlandt E, Gotwald T, Albrecht U, Baumgartner Sigl S, Rauchenzauner M, et al. Stroke-like episodes in propionic acidemia caused by central focal metabolic decompensation. Neuropediatrics. 2009;40(2):76–81.

    Article  CAS  PubMed  Google Scholar 

  32. Sutton VR, Chapman KA, Gropman AL, MacLeod E, Stagni K, Summar ML, et al. Chronic management and health supervision of individuals with propionic acidemia. Mol Genet Metab. 2012;105(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  33. de Baulny HO, Benoist JF, Rigal O, Touati G, Rabier D, Saudubray JM. Methylmalonic and propionic acidaemias: management and outcome. J Inherit Metab Dis. 2005;28(3):415–23.

    Article  CAS  PubMed  Google Scholar 

  34. Cosson MA, Benoist JF, Touati G, Dechaux M, Royer N, Grandin L, et al. Long-term outcome in methylmalonic aciduria: a series of 30 French patients. Mol Genet Metab. 2009;97(3):172–8.

    Article  CAS  PubMed  Google Scholar 

  35. Schreiber J, Chapman KA, Summar ML, Ah Mew N, Sutton VR, MacLeod E, et al. Neurologic considerations in propionic acidemia. Mol Genet Metab. 2012;105(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  36. Pfeifer CM, Van Tassel DC, Miller JH. Unique neuroradiological findings in propionic acidemia. Radiol Case Rep. 2018;13(6):1207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chapman KA, Gropman A, MacLeod E, Stagni K, Summar ML, Ueda K, et al. Acute management of propionic acidemia. Mol Genet Metab. 2012;105(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  38. Sindgikar SP, Shenoy KD, Kamath N, Shenoy R. Audit of organic acidurias from a single centre: clinical and metabolic profile at presentation with long term outcome. J Clin Diagn Res. 2017;11(9):SC11–SC4.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ianchulev T, Kolin T, Moseley K, Sadun A. Optic nerve atrophy in propionic acidemia. Ophthalmology. 2003;110(9):1850–4.

    Article  PubMed  Google Scholar 

  40. Martin-Hernandez E, Lee PJ, Micciche A, Grunewald S, Lachmann RH. Long-term needs of adult patients with organic acidaemias: outcome and prognostic factors. J Inherit Metab Dis. 2009;32(4):523–33.

    Article  CAS  PubMed  Google Scholar 

  41. Williams ZR, Hurley PE, Altiparmak UE, Feldon SE, Arnold GL, Eggenberger E, et al. Late onset optic neuropathy in methylmalonic and propionic acidemia. Am J Ophthalmol. 2009;147(5):929–33.

    Article  CAS  PubMed  Google Scholar 

  42. Wongkittichote P, Ah Mew N, Chapman KA. Propionyl-CoA carboxylase - a review. Mol Genet Metab. 2017;122(4):145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cudre-Cung HP, Zavadakova P, do Vale-Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119(1–2):57–67.

    Article  CAS  PubMed  Google Scholar 

  44. Haberle J, Chakrapani A, Ah Mew N, Longo N. Hyperammonaemia in classic organic acidaemias: a review of the literature and two case histories. Orphanet J Rare Dis. 2018;13(1):219.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kolker S, Schwab M, Horster F, Sauer S, Hinz A, Wolf NI, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278(48):47388–93.

    Article  PubMed  Google Scholar 

  46. Morath MA, Okun JG, Muller IB, Sauer SW, Horster F, Hoffmann GF, et al. Neurodegeneration and chronic renal failure in methylmalonic aciduria--a pathophysiological approach. J Inherit Metab Dis. 2008;31(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  47. Ballhausen D, Mittaz L, Boulat O, Bonafe L, Braissant O. Evidence for catabolic pathway of propionate metabolism in CNS: expression pattern of methylmalonyl-CoA mutase and propionyl-CoA carboxylase alpha-subunit in developing and adult rat brain. Neuroscience. 2009;164(2):578–87.

    Article  CAS  PubMed  Google Scholar 

  48. Broomfield A, Gunny R, Prabhakar P, Grunewald S. Spontaneous rapid resolution of acute basal ganglia changes in an untreated infant with propionic acidemia: a clue to pathogenesis? Neuropediatrics. 2010;41(6):256–60.

    Article  CAS  PubMed  Google Scholar 

  49. Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP, Funck VR, Pinton S, Bobinski F, et al. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology. 2013;218(9):1175–83.

    Article  CAS  PubMed  Google Scholar 

  50. Schuck PF, Alves L, Pettenuzzo LF, Felisberto F, Rodrigues LB, Freitas BW, et al. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats. Free Radic Res. 2013;47(3):233–40.

    Article  CAS  PubMed  Google Scholar 

  51. Pena L, Burton BK. Survey of health status and complications among propionic acidemia patients. Am J Med Genet A. 2012;158A(7):1641–6.

    Article  PubMed  Google Scholar 

  52. Viegas CM, Zanatta A, Grings M, Hickmann FH, Monteiro WO, Soares LE, et al. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res. 2014;48(6):659–69.

    Article  CAS  PubMed  Google Scholar 

  53. Shchelochkov OA, Manoli I, Sloan JL, Ferry S, Pass A, Van Ryzin C, et al. Chronic kidney disease in propionic acidemia. Genet Med. 2019;21(12):2830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lam C, Desviat LR, Perez-Cerda C, Ugarte M, Barshop BA, Cederbaum S. 45-year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab. 2011;103(4):338–40.

    Article  CAS  PubMed  Google Scholar 

  55. Vernon HJ, Bagnasco S, Hamosh A, Sperati CJ. Chronic kidney disease in an adult with propionic acidemia. JIMD Rep. 2014;12:5–10.

    Article  CAS  PubMed  Google Scholar 

  56. Kasapkara CS, Akar M, Yuruk Yildirim ZN, Tuzun H, Kanar B, Ozbek MN. Severe renal failure and hyperammonemia in a newborn with propionic acidemia: effects of treatment on the clinical course. Ren Fail. 2014;36(3):451–2.

    Article  PubMed  Google Scholar 

  57. Rutledge SL, Geraghty M, Mroczek E, Rosenblatt D, Kohout E. Tubulointerstitial nephritis in methylmalonic acidemia. Pediatr Nephrol. 1993;7(1):81–2.

    Article  CAS  PubMed  Google Scholar 

  58. Horster F, Baumgartner MR, Viardot C, Suormala T, Burgard P, Fowler B, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res. 2007;62(2):225–30.

    Article  PubMed  Google Scholar 

  59. Zsengeller ZK, Aljinovic N, Teot LA, Korson M, Rodig N, Sloan JL, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29(11):2139–46.

    Article  PubMed  Google Scholar 

  60. Massoud AF, Leonard JV. Cardiomyopathy in propionic acidaemia. Eur J Pediatr. 1993;152(5):441–5.

    Article  CAS  PubMed  Google Scholar 

  61. Lee TM, Addonizio LJ, Barshop BA, Chung WK. Unusual presentation of propionic acidaemia as isolated cardiomyopathy. J Inherit Metab Dis. 2009;32 Suppl 1:S97–101.

    Article  CAS  PubMed  Google Scholar 

  62. Romano S, Valayannopoulos V, Touati G, Jais JP, Rabier D, de Keyzer Y, et al. Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr. 2010;156(1):128–34.

    Article  PubMed  Google Scholar 

  63. Prada CE, Al Jasmi F, Kirk EP, Hopp M, Jones O, Leslie ND, et al. Cardiac disease in methylmalonic acidemia. J Pediatr. 2011;159(5):862–4.

    Article  PubMed  Google Scholar 

  64. Laemmle A, Balmer C, Doell C, Sass JO, Haberle J, Baumgartner MR. Propionic acidemia in a previously healthy adolescent with acute onset of dilated cardiomyopathy. Eur J Pediatr. 2014;173(7):971–4.

    Article  CAS  PubMed  Google Scholar 

  65. Kakavand B, Schroeder VA, Di Sessa TG. Coincidence of long QT syndrome and propionic acidemia. Pediatr Cardiol. 2006;27(1):160–1.

    Article  CAS  PubMed  Google Scholar 

  66. Baumgartner D, Scholl-Burgi S, Sass JO, Sperl W, Schweigmann U, Stein JI, et al. Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia. J Pediatr. 2007;150(2):192–7, 7 e1.

    Article  PubMed  Google Scholar 

  67. Jameson E, Walter J. Cardiac arrest secondary to long QT(C )in a child with propionic acidemia. Pediatr Cardiol. 2008;29(5):969–70.

    Article  PubMed  Google Scholar 

  68. Grunert SC, Mullerleile S, De Silva L, Barth M, Walter M, Walter K, et al. Propionic acidemia: clinical course and outcome in 55 pediatric and adolescent patients. Orphanet J Rare Dis. 2013;8:6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. De Raeve L, De Meirleir L, Ramet J, Vandenplas Y, Gerlo E. Acrodermatitis enteropathica-like cutaneous lesions in organic aciduria. J Pediatr. 1994;124(3):416–20.

    Article  PubMed  Google Scholar 

  70. Ozturk Y. Acrodermatitis enteropathica-like syndrome secondary to branched-chain amino acid deficiency in inborn errors of metabolism. Pediatr Dermatol. 2008;25(3):415.

    Article  PubMed  Google Scholar 

  71. Dominguez-Cruz JJ, Bueno-Delgado M, Pereyra J, Bernabeu-Wittel J, Conejo-Mir J. Acrodermatitis enerophatica-like skin lesions secondary to isoleucine deficiency. Eur J Dermatol. 2011;21(1):115–6.

    Article  PubMed  Google Scholar 

  72. Choe JY, Jang KM, Min SY, Hwang SK, Kang B, Choe BH. Propionic acidemia with novel mutation presenting as recurrent pancreatitis in a child. J Korean Med Sci. 2019;34(47):e303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Imbard A, Garcia Segarra N, Tardieu M, Broue P, Bouchereau J, Pichard S, et al. Long-term liver disease in methylmalonic and propionic acidemias. Mol Genet Metab. 2018;123(4):433–40.

    Article  CAS  PubMed  Google Scholar 

  74. Sag E, Cebi AH, Kaya G, Karaguzel G, Cakir M. A rare cause of recurrent acute pancreatitis in a child: isovaleric acidemia with novel mutation. Pediatr Gastroenterol Hepatol Nutr. 2017;20(1):61–4.

    Article  PubMed  PubMed Central  Google Scholar 

  75. North KN, Korson MS, Gopal YR, Rohr FJ, Brazelton TB, Waisbren SE, et al. Neonatal-onset propionic acidemia: neurologic and developmental profiles, and implications for management. J Pediatr. 1995;126(6):916–22.

    Article  CAS  PubMed  Google Scholar 

  76. Kahler SG, Sherwood WG, Woolf D, Lawless ST, Zaritsky A, Bonham J, et al. Pancreatitis in patients with organic acidemias. J Pediatr. 1994;124(2):239–43.

    Article  CAS  PubMed  Google Scholar 

  77. Burlina AB, Dionisi-Vici C, Piovan S, Saponara I, Bartuli A, Sabetta G, et al. Acute pancreatitis in propionic acidaemia. J Inherit Metab Dis. 1995;18(2):169–72.

    Article  CAS  PubMed  Google Scholar 

  78. Bultron G, Seashore MR, Pashankar DS, Husain SZ. Recurrent acute pancreatitis associated with propionic acidemia. J Pediatr Gastroenterol Nutr. 2008;47(3):370–1.

    Article  PubMed  Google Scholar 

  79. Mantadakis E, Chrysafis I, Tsouvala E, Evangeliou A, Chatzimichael A. Acute pancreatitis with rapid clinical improvement in a child with isovaleric acidemia. Case Rep Pediatr. 2013;2013:721871.

    PubMed  PubMed Central  Google Scholar 

  80. Grunert SC, Bodi I, Odening KE. Possible mechanisms for sensorineural hearing loss and deafness in patients with propionic acidemia. Orphanet J Rare Dis. 2017;12(1):30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG, et al. Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int. 2002;40(7):593–601.

    Article  CAS  PubMed  Google Scholar 

  82. Ozand PT, Gascon GG. Organic acidurias: a review. Part 2. J Child Neurol. 1991;6(4):288–303.

    Article  CAS  PubMed  Google Scholar 

  83. Ozand PT, Gascon GG. Organic acidurias: a review. Part 1. J Child Neurol. 1991;6(3):196–219.

    Article  CAS  PubMed  Google Scholar 

  84. Ribeiro CA, Balestro F, Grando V, Wajner M. Isovaleric acid reduces Na+, K+-ATPase activity in synaptic membranes from cerebral cortex of young rats. Cell Mol Neurobiol. 2007;27(4):529–40.

    Article  CAS  PubMed  Google Scholar 

  85. Amaral AU, et al. 2-methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria. J Neurochem. 2016;137(1):62–75.

    Article  CAS  PubMed  Google Scholar 

  86. Nizon M, Ottolenghi C, Valayannopoulos V, Arnoux JB, Barbier V, Habarou F, et al. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis. 2013;8:148.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Luciani A, Schumann A, Berquez M, Chen Z, Nieri D, Failli M, et al. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency. Nat Commun. 2020;11(1):970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ruppert T, Schumann A, Grone HJ, Okun JG, Kolker S, Morath MA, et al. Molecular and biochemical alterations in tubular epithelial cells of patients with isolated methylmalonic aciduria. Hum Mol Genet. 2015;24(24):7049–59.

    CAS  PubMed  Google Scholar 

  89. Chandler RJ, Zerfas PM, Shanske S, Sloan J, Hoffmann V, DiMauro S, et al. Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J. 2009;23(4):1252–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  91. Melo DR, Kowaltowski AJ, Wajner M, Castilho RF. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr. 2011;43(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  92. Wilnai Y, Enns GM, Niemi AK, Higgins J, Vogel H. Abnormal hepatocellular mitochondria in methylmalonic acidemia. Ultrastruct Pathol. 2014;38(5):309–14.

    Article  PubMed  Google Scholar 

  93. Richard E, Alvarez-Barrientos A, Perez B, Desviat LR, Ugarte M. Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol. 2007;213(4):453–61.

    Article  CAS  PubMed  Google Scholar 

  94. Solano AF, Leipnitz G, De Bortoli GM, Seminotti B, Amaral AU, Fernandes CG, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–15.

    Article  CAS  PubMed  Google Scholar 

  95. Fernandes CG, Borges CG, Seminotti B, Amaral AU, Knebel LA, Eichler P, et al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31(5):775–85.

    Article  CAS  PubMed  Google Scholar 

  96. Collado MS, Armstrong AJ, Olson M, Hoang SA, Day N, Summar M, et al. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes. Mol Genet Metab. 2020;130(3):183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Luciani A, Devuyst O. Methylmalonyl acidemia: from mitochondrial metabolism to defective mitophagy and disease. Autophagy. 2020;16(6):1159–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Caterino M, Chandler RJ, Sloan JL, Dorko K, Cusmano-Ozog K, Ingenito L, et al. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. Mol Biosyst. 2016;12(2):566–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Imperlini E, Santorelli L, Orru S, Scolamiero E, Ruoppolo M, Caterino M. Mass spectrometry-based metabolomic and proteomic strategies in organic acidemias. Biomed Res Int. 2016;2016:9210408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Storgaard JH, Madsen KL, Lokken N, Vissing J, van Hall G, Lund AM, et al. Impaired lipolysis in propionic acidemia: a new metabolic myopathy? JIMD Rep. 2020;53(1):16–21.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Filipowicz HR, Ernst SL, Ashurst CL, Pasquali M, Longo N. Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol Genet Metab. 2006;88(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  102. Gebhardt B, Dittrich S, Parbel S, Vlaho S, Matsika O, Bohles H. N-carbamylglutamate protects patients with decompensated propionic aciduria from hyperammonaemia. J Inherit Metab Dis. 2005;28(2):241–4.

    Article  CAS  PubMed  Google Scholar 

  103. Yannicelli S. Nutrition therapy of organic acidaemias with amino acid-based formulas: emphasis on methylmalonic and propionic acidaemia. J Inherit Metab Dis. 2006;29(2–3):281–7.

    Article  CAS  PubMed  Google Scholar 

  104. Knerr I, Gibson KM. Disorders of leucine, isoleucine and valine metabolism. In: Blau N, editor. Physician’s guide to the diagnosis, treatment and follow-up of inherited metabolic diseases. Berlin: Springer-Verlag; 2014.

    Google Scholar 

  105. Feillet F, Bodamer OA, Dixon MA, Sequeira S, Leonard JV. Resting energy expenditure in disorders of propionate metabolism. J Pediatr. 2000;136(5):659–63.

    Article  CAS  PubMed  Google Scholar 

  106. Thomas JA, Bernstein LE, Greene CL, Koeller DM. Apparent decreased energy requirements in children with organic acidemias: preliminary observations. J Am Diet Assoc. 2000;100(9):1074–6.

    Article  CAS  PubMed  Google Scholar 

  107. Hauser NS, Manoli I, Graf JC, Sloan J, Venditti CP. Variable dietary management of methylmalonic acidemia: metabolic and energetic correlations. Am J Clin Nutr. 2011;93(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  108. Jurecki E, Ueda K, Frazier D, Rohr F, Thompson A, Hussa C, et al. Nutrition management guideline for propionic acidemia: an evidence- and consensus-based approach. Mol Genet Metab. 2019;126(4):341–54.

    Article  CAS  PubMed  Google Scholar 

  109. Roe CR, Millington DS, Maltby DA, Kahler SG, Bohan TP. L-carnitine therapy in isovaleric acidemia. J Clin Invest. 1984;74(6):2290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. de Sousa C, Chalmers RA, Stacey TE, Tracey BM, Weaver CM, Bradley D. The response to L-carnitine and glycine therapy in isovaleric acidaemia. Eur J Pediatr. 1986;144(5):451–6.

    Article  PubMed  Google Scholar 

  111. Chinen Y, Nakamura S, Tamashiro K, Sakamoto O, Tashiro K, Inokuchi T, et al. Isovaleric acidemia: therapeutic response to supplementation with glycine, l-carnitine, or both in combination and a 10-year follow-up case study. Mol Genet Metab Rep. 2017;11:2–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Berry GT, Yudkoff M, Segal S. Isovaleric acidemia: medical and neurodevelopmental effects of long-term therapy. J Pediatr. 1988;113(1 Pt 1):58–64.

    Article  CAS  PubMed  Google Scholar 

  113. Naglak M, Salvo R, Madsen K, Dembure P, Elsas L. The treatment of isovaleric acidemia with glycine supplement. Pediatr Res. 1988;24(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  114. Fries MH, Rinaldo P, Schmidt-Sommerfeld E, Jurecki E, Packman S. Isovaleric acidemia: response to a leucine load after three weeks of supplementation with glycine, L-carnitine, and combined glycine-carnitine therapy. J Pediatr. 1996;129(3):449–52.

    Article  CAS  PubMed  Google Scholar 

  115. Valayannopoulos V, Baruteau J, Delgado MB, Cano A, Couce ML, Del Toro M, et al. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: a retrospective observational study. Orphanet J Rare Dis. 2016;11:32.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ah Mew N, McCarter R, Daikhin Y, Nissim I, Yudkoff M, Tuchman M. N-carbamylglutamate augments ureagenesis and reduces ammonia and glutamine in propionic acidemia. Pediatrics. 2010;126(1):e208–14.

    Article  PubMed  Google Scholar 

  117. Tummolo A, Melpignano L, Carella A, Di Mauro AM, Piccinno E, Vendemiale M, et al. Long-term continuous N-carbamylglutamate treatment in frequently decompensated propionic acidemia: a case report. J Med Case Reports. 2018;12(1):103.

    Article  Google Scholar 

  118. Al-Hassnan ZN, Boyadjiev SA, Praphanphoj V, Hamosh A, Braverman NE, Thomas GH, et al. The relationship of plasma glutamine to ammonium and of glycine to acid-base balance in propionic acidaemia. J Inherit Metab Dis. 2003;26(1):89–91.

    Article  CAS  PubMed  Google Scholar 

  119. Siekmeyer M, Petzold-Quinque S, Terpe F, Beblo S, Gebhardt R, Schlensog-Schuster F, et al. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidemia. J Pediatr Endocrinol Metab. 2013;26(5–6):569–74.

    PubMed  Google Scholar 

  120. Longo N, et al. Anaplerotic therapy in propionic acidemia. Mol Genet Metab. 2018;122(1–2):51–9.

    Google Scholar 

  121. Pinar-Sueiro S, Martinez-Fernandez R, Lage-Medina S, Aldamiz-Echevarria L, Vecino E. Optic neuropathy in methylmalonic acidemia: the role of neuroprotection. J Inherit Metab Dis. 2010;33 Suppl 3:S199–203.

    Article  PubMed  Google Scholar 

  122. Fragaki K, Cano A, Benoist JF, Rigal O, Chaussenot A, Rouzier C, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic acidemia. Mitochondrion. 2011;11(3):533–6.

    Article  CAS  PubMed  Google Scholar 

  123. Ha TS, Lee JS, Hong EJ. Delay of renal progression in methylmalonic acidemia using angiotensin II inhibition: a case report. J Nephrol. 2008;21(5):793–6.

    PubMed  Google Scholar 

  124. Kelts DG, Ney D, Bay C, Saudubray JM, Nyhan WL. Studies on requirements for amino acids in infants with disorders of amino acid metabolism. I. Effect of alanine. Pediatr Res. 1985;19(1):86–91.

    Article  CAS  PubMed  Google Scholar 

  125. Wolff JA, Kelts DG, Algert S, Prodanos C, Nyhan WL. Alanine decreases the protein requirements of infants with inborn errors of amino acid metabolism. J Neurogenet. 1985;2(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  126. Marsden D, Barshop BA, Capistrano-Estrada S, Rice M, Prodanos C, Sartoris D, et al. Anabolic effect of human growth hormone: management of inherited disorders of catabolic pathways. Biochem Med Metab Biol. 1994;52(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  127. Treacy E, Arbour L, Chessex P, Graham G, Kasprzak L, Casey K, et al. Glutathione deficiency as a complication of methylmalonic acidemia: response to high doses of ascorbate. J Pediatr. 1996;129(3):445–8.

    Article  CAS  PubMed  Google Scholar 

  128. Touati G, Valayannopoulos V, Mention K, de Lonlay P, Jouvet P, Depondt E, et al. Methylmalonic and propionic acidurias: management without or with a few supplements of specific amino acid mixture. J Inherit Metab Dis. 2006;29(2–3):288–98.

    Article  CAS  PubMed  Google Scholar 

  129. Gander JW, Rhone ET, Wilson WG, Barcia JP, Sacco MJ. Veno-venous extracorporeal membrane oxygenation for continuous renal replacement in a neonate with propionic acidemia. J Extra Corpor Technol. 2017;49(1):64–6.

    PubMed  PubMed Central  Google Scholar 

  130. Aygun F, Varol F, Aktuglu-Zeybek C, Kiykim E, Cam H. Continuous renal replacement therapy with high flow rate can effectively, safely, and quickly reduce plasma ammonia and leucine levels in children. Children (Basel). 2019;6(4):53.

    Google Scholar 

  131. Jones S, Reed CA, Vijay S, Walter JH, Morris AA. N-carbamylglutamate for neonatal hyperammonaemia in propionic acidaemia. J Inherit Metab Dis. 2008;31 Suppl 2:S219–22.

    Article  CAS  PubMed  Google Scholar 

  132. Filippi L, Gozzini E, Fiorini P, Malvagia S, la Marca G, Donati MA. N-carbamylglutamate in emergency management of hyperammonemia in neonatal acute onset propionic and methylmalonic aciduria. Neonatology. 2010;97(3):286–90.

    Article  CAS  PubMed  Google Scholar 

  133. Schwahn BC, Pieterse L, Bisset WM, Galloway PG, Robinson PH. Biochemical efficacy of N-carbamylglutamate in neonatal severe hyperammonaemia due to propionic acidaemia. Eur J Pediatr. 2010;169(1):133–4.

    Article  PubMed  Google Scholar 

  134. Kasapkara CS, Ezgu FS, Okur I, Tumer L, Biberoglu G, Hasanoglu A. N-carbamylglutamate treatment for acute neonatal hyperammonemia in isovaleric acidemia. Eur J Pediatr. 2011;170(6):799–801.

    Article  CAS  PubMed  Google Scholar 

  135. Abacan M, Boneh A. Use of carglumic acid in the treatment of hyperammonaemia during metabolic decompensation of patients with propionic acidaemia. Mol Genet Metab. 2013;109(4):397–401.

    Article  CAS  PubMed  Google Scholar 

  136. Matern D, Seydewitz HH, Lehnert W, Niederhoff H, Leititis JU, Brandis M. Primary treatment of propionic acidemia complicated by acute thiamine deficiency. J Pediatr. 1996;129(5):758–60.

    Article  CAS  PubMed  Google Scholar 

  137. Mayatepek E, Schulze A. Metabolic decompensation and lactic acidosis in propionic acidaemia complicated by thiamine deficiency. J Inherit Metab Dis. 1999;22(2):189–90.

    Article  CAS  PubMed  Google Scholar 

  138. Critelli K, McKiernan P, Vockley J, Mazariegos G, Squires RH, Soltys K, et al. Liver transplantation for propionic acidemia and methylmalonic acidemia: perioperative management and clinical outcomes. Liver Transpl. 2018;24(9):1260–70.

    Article  PubMed  Google Scholar 

  139. Chu TH, Chien YH, Lin HY, Liao HC, Ho HJ, Lai CJ, et al. Methylmalonic acidemia/propionic acidemia - the biochemical presentation and comparing the outcome between liver transplantation versus non-liver transplantation groups. Orphanet J Rare Dis. 2019;14(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jain-Ghai S, Joffe AR, Bond GY, Siriwardena K, Chan A, Yap JYK, et al. Pre-school neurocognitive and functional outcomes after liver transplant in children with early onset urea cycle disorders, maple syrup urine disease, and propionic acidemia: an inception cohort matched-comparison study. JIMD Rep. 2020;52(1):43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Quintero J, Molera C, Juamperez J, Redecillas S, Meavilla S, Nunez R, et al. The role of liver transplantation in propionic acidemia. Liver Transpl. 2018;24(12):1736–45.

    Article  PubMed  Google Scholar 

  142. Van Calcar SC, Harding CO, Lyne P, Hogan K, Banerjee R, Sollinger H, et al. Renal transplantation in a patient with methylmalonic acidaemia. J Inherit Metab Dis. 1998;21(7):729–37.

    Article  PubMed  Google Scholar 

  143. van’t Hoff WG, Dixon M, Taylor J, Mistry P, Rolles K, Rees L, et al. Combined liver-kidney transplantation in methylmalonic acidemia. J Pediatr. 1998;132(6):1043–4.

    Article  Google Scholar 

  144. Lubrano R, Scoppi P, Barsotti P, Travasso E, Scateni S, Cristaldi S, et al. Kidney transplantation in a girl with methylmalonic acidemia and end stage renal failure. Pediatr Nephrol. 2001;16(11):848–51.

    Article  CAS  PubMed  Google Scholar 

  145. Nagarajan S, Enns GM, Millan MT, Winter S, Sarwal MM. Management of methylmalonic acidaemia by combined liver-kidney transplantation. J Inherit Metab Dis. 2005;28(4):517–24.

    Article  CAS  PubMed  Google Scholar 

  146. Lubrano R, Elli M, Rossi M, Travasso E, Raggi C, Barsotti P, et al. Renal transplant in methylmalonic acidemia: could it be the best option? Report on a case at 10 years and review of the literature. Pediatr Nephrol. 2007;22(8):1209–14.

    Article  PubMed  Google Scholar 

  147. Mc Guire PJ, Lim-Melia E, Diaz GA, Raymond K, Larkin A, Wasserstein MP, et al. Combined liver-kidney transplant for the management of methylmalonic aciduria: a case report and review of the literature. Mol Genet Metab. 2008;93(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  148. Clothier JC, Chakrapani A, Preece MA, McKiernan P, Gupta R, Macdonald A, et al. Renal transplantation in a boy with methylmalonic acidaemia. J Inherit Metab Dis. 2011;34(3):695–700.

    Article  PubMed  Google Scholar 

  149. Yorifuji T, Muroi J, Uematsu A, Nakahata T, Egawa H, Tanaka K. Living-related liver transplantation for neonatal-onset propionic acidemia. J Pediatr. 2000;137(4):572–4.

    Article  CAS  PubMed  Google Scholar 

  150. Barshes NR, Vanatta JM, Patel AJ, Carter BA, O’Mahony CA, Karpen SJ, et al. Evaluation and management of patients with propionic acidemia undergoing liver transplantation: a comprehensive review. Pediatr Transplant. 2006;10(7):773–81.

    Article  PubMed  Google Scholar 

  151. Kasahara M, Horikawa R, Tagawa M, Uemoto S, Yokoyama S, Shibata Y, et al. Current role of liver transplantation for methylmalonic acidemia: a review of the literature. Pediatr Transplant. 2006;10(8):943–7.

    Article  PubMed  Google Scholar 

  152. Chen PW, Hwu WL, Ho MC, Lee NC, Chien YH, Ni YH, et al. Stabilization of blood methylmalonic acid level in methylmalonic acidemia after liver transplantation. Pediatr Transplant. 2010;14(3):337–41.

    Article  PubMed  CAS  Google Scholar 

  153. Vara R, Turner C, Mundy H, Heaton ND, Rela M, Mieli-Vergani G, et al. Liver transplantation for propionic acidemia in children. Liver Transpl. 2011;17(6):661–7.

    Article  PubMed  Google Scholar 

  154. Brassier A, Boyer O, Valayannopoulos V, Ottolenghi C, Krug P, Cosson MA, et al. Renal transplantation in 4 patients with methylmalonic aciduria: a cell therapy for metabolic disease. Mol Genet Metab. 2013;110(1–2):106–10.

    Article  CAS  PubMed  Google Scholar 

  155. Nagao M, Tanaka T, Morii M, Wakai S, Horikawa R, Kasahara M. Improved neurologic prognosis for a patient with propionic acidemia who received early living donor liver transplantation. Mol Genet Metab. 2013;108(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  156. Arrizza C, De Gottardi A, Foglia E, Baumgartner M, Gautschi M, Nuoffer JM. Reversal of cardiomyopathy in propionic acidemia after liver transplantation: a 10-year follow-up. Transpl Int. 2015;28(12):1447–50.

    Article  PubMed  Google Scholar 

  157. Ou P, Touati G, Fraisse A, Sidi D, Kachaner J, Saudubray JM, et al. A rare cause of cardiomyopathy in childhood: propionic acidosis. Three case reports. Arch Mal Coeur Vaiss. 2001;94(5):531–3.

    CAS  PubMed  Google Scholar 

  158. Berry GT, Blume ED, Wessel A, Singh T, Hecht L, Marsden D, et al. The re-occurrence of cardiomyopathy in propionic acidemia after liver transplantation. JIMD Rep. 2020;54(1):3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kasahara M, Sakamoto S, Kanazawa H, Karaki C, Kakiuchi T, Shigeta T, et al. Living-donor liver transplantation for propionic acidemia. Pediatr Transplant. 2012;16(3):230–4.

    Article  CAS  PubMed  Google Scholar 

  160. Chakrapani A, Sivakumar P, McKiernan PJ, Leonard JV. Metabolic stroke in methylmalonic acidemia five years after liver transplantation. J Pediatr. 2002;140(2):261–3.

    Article  PubMed  Google Scholar 

  161. Nyhan WL, Gargus JJ, Boyle K, Selby R, Koch R. Progressive neurologic disability in methylmalonic acidemia despite transplantation of the liver. Eur J Pediatr. 2002;161(7):377–9.

    Article  PubMed  Google Scholar 

  162. Collard R, Majtan T, Park I, Kraus JP. Import of TAT-conjugated propionyl coenzyme a carboxylase using models of propionic acidemia. Mol Cell Biol. 2018;38(6):e00491–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. An D, Schneller JL, Frassetto A, Liang S, Zhu X, Park JS, et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 2017;21(12):3548–58.

    Article  CAS  PubMed  Google Scholar 

  164. Erlich-Hadad T, Hadad R, Feldman A, Greif H, Lictenstein M, Lorberboum-Galski H. TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells. J Cell Mol Med. 2018;22(3):1601–13.

    Article  CAS  PubMed  Google Scholar 

  165. An D, Frassetto A, Jacquinet E, Eybye M, Milano J, DeAntonis C, et al. Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine. 2019;45:519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Chandler RJ, Venditti CP. Gene therapy for methylmalonic acidemia: past, present, and future. Hum Gene Ther. 2019;30(10):1236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Al-Dirbashi OY, Alfadhel M, Al-Thihli K, Al Dhahouri N, Langhans CD, Al Hammadi Z, et al. Assessment of methylcitrate and methylcitrate to citrate ratio in dried blood spots as biomarkers for inborn errors of propionate metabolism. Sci Rep. 2019;9(1):12366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Arnold GL, et al. Methylcitrate/citrate ratio as a predictor of clinical control in propionic acidemia. J Inherit Metab Dis. 2003:37.

    Google Scholar 

  169. Zwickler T, Haege G, Riderer A, Horster F, Hoffmann GF, Burgard P, et al. Metabolic decompensation in methylmalonic aciduria: which biochemical parameters are discriminative? J Inherit Metab Dis. 2012;35(5):797–806.

    Article  CAS  PubMed  Google Scholar 

  170. Zwickler T, Riderer A, Haege G, Hoffmann GF, Kolker S, Burgard P. Usefulness of biochemical parameters in decision-making on the start of emergency treatment in patients with propionic acidemia. J Inherit Metab Dis. 2014;37(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  171. Molema F, Jacobs EH, Onkenhout W, Schoonderwoerd GC, Langendonk JG, Williams M. Fibroblast growth factor 21 as a biomarker for long-term complications in organic acidemias. J Inherit Metab Dis. 2018;41(6):1179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Manoli I, Sysol JR, Epping MW, Li L, Wang C, Sloan JL, et al. FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia. JCI Insight. 2018;3(23):e124351.

    Article  PubMed Central  Google Scholar 

  173. Propionic acidemia: care plan & shared dataset. Mountain States Genetics Regional Collaborative; 2013.

    Google Scholar 

  174. Surtees RA, Matthews EE, Leonard JV. Neurologic outcome of propionic acidemia. Pediatr Neurol. 1992;8(5):333–7.

    Article  CAS  PubMed  Google Scholar 

  175. Nicolaides P, Leonard J, Surtees R. Neurological outcome of methylmalonic acidaemia. Arch Dis Child. 1998;78(6):508–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. O’Shea CJ, Sloan JL, Wiggs EA, Pao M, Gropman A, Baker EH, et al. Neurocognitive phenotype of isolated methylmalonic acidemia. Pediatrics. 2012;129(6):e1541–51.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Szymanska E, Jezela-Stanek A, Bogdanska A, Rokicki D, Ehmke Vel Emczynska-Seliga E, Pajdowska M, et al. Long term follow-up of polish patients with isovaleric aciduria. Clinical and molecular delineation of isovaleric aciduria. Diagnostics (Basel). 2020;10(10):738.

    Article  Google Scholar 

  178. Grunert SC, Wendel U, Lindner M, Leichsenring M, Schwab KO, Vockley J, et al. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J Rare Dis. 2012;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  179. van der Meer SB, Poggi F, Spada M, Bonnefont JP, Ogier H, Hubert P, et al. Clinical outcome of long-term management of patients with vitamin B12-unresponsive methylmalonic acidemia. J Pediatr. 1994;125(6 Pt 1):903–8.

    Article  PubMed  Google Scholar 

  180. Fischer AQ, Challa VR, Burton BK, McLean WT. Cerebellar hemorrhage complicating isovaleric acidemia: a case report. Neurology. 1981;31(6):746–8.

    Article  CAS  PubMed  Google Scholar 

  181. van der Meer SB, Poggi F, Spada M, Bonnefont JP, Ogier H, Hubert P, et al. Clinical outcome and long-term management of 17 patients with propionic acidaemia. Eur J Pediatr. 1996;155(3):205–10.

    Article  PubMed  Google Scholar 

  182. Ledley FD, Levy HL, Shih VE, Benjamin R, Mahoney MJ. Benign methylmalonic aciduria. N Engl J Med. 1984;311(16):1015–8.

    Article  CAS  PubMed  Google Scholar 

  183. Treacy E, Clow C, Mamer OA, Scriver CR. Methylmalonic acidemia with a severe chemical but benign clinical phenotype. J Pediatr. 1993;122(3):428–9.

    Article  CAS  PubMed  Google Scholar 

  184. Grunert SC, Mullerleile S, de Silva L, Barth M, Walter M, Walter K, et al. Propionic acidemia: neonatal versus selective metabolic screening. J Inherit Metab Dis. 2012;35(1):41–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet A. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, J.A. (2022). Organic Acidemias. In: Bernstein, L.E., Rohr, F., van Calcar, S. (eds) Nutrition Management of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-94510-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94510-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94509-1

  • Online ISBN: 978-3-030-94510-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics