Skip to main content

Metal-Oxide Semiconductor Nanomaterials as Alternative to Carbon Allotropes for Third-Generation Thin-Film Dye-Sensitized Solar Cells

  • Chapter
  • First Online:
Defect Engineering of Carbon Nanostructures

Abstract

In photovoltaic generations of a solar cell, thin-film dye-sensitized solar cells have a significant role in clean energy production due to low-cost, easy fabrication process, and maximum efficiencies even in low-intensity radiations from the sun in a cloudy environment. The charge transportation mechanism, electron diffusion and movement, charge collection efficiency, charge recombination reactions, and the electron path length influence the DSSC performance. All these factors are linked with the photoanode material. Porosity, surface area, composition, and architecture are the key parameters which should be considered for the material selection of DSSC photoanode. This chapter comprises three parts. In the first section, a brief introduction to photovoltaic technologies, working mechanism of DSSC, and structure of DSSC will be discussed in detail. The role of metal oxide semiconductor materials in DSSCs and their types will be discussed in second part. Finally, the morphology, modification of semiconductor materials, and their effect on the photovoltaic properties of light-harvesting devices will be discussed in detail in the last part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Etxebarria, I., Ajuria, J. & Pacios, R. Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review. J. Photonics Energy5, 057214 (2015).

    Google Scholar 

  2. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev.110, 6595–6663 (2010).

    Article  CAS  Google Scholar 

  3. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature353, 737–740 (1991).

    Article  Google Scholar 

  4. Iwata, S., Shibakawa, S. ichiro, Imawaka, N. & Yoshino, K. Stability of the current characteristics of dye-sensitized solar cells in the second quadrant of the current–voltage characteristics. Energy Reports4, 8–12 (2018).

    Google Scholar 

  5. Akman, E. Enhanced photovoltaic performance and stability of dye-sensitized solar cells by utilizing manganese-doped ZnO photoanode with europium compact layer. J. Mol. Liq.317, 114223 (2020).

    Google Scholar 

  6. Ou, J. Z. et al. Erratum: Elevated temperature anodized Nb 2O 5-A photoanode material with exceptionally large photoconversion efficiencies (ACS Nano (2012) 6 (4045–4053) DOI: https://doi.org/10.1021/nn300408p). ACS Nano6, 5737 (2012).

  7. Nazeeruddin, M. K., Liska, P., Moser, J., Vlachopoulos, N. & Grätzel, M. Conversion of Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured TiO2 Films. Helv. Chim. Acta73, 1788–1803 (1990).

    Article  CAS  Google Scholar 

  8. Shin, Y.-J., Lee, J.-H., Park, J.-H. & Park, N.-G. Enhanced Photovoltaic Properties of SiO 2 -treated ZnO Nanocrystalline Electrode for Dye-sensitized Solar Cell. Chem. Lett.36, 1506–1507 (2007).

    Article  CAS  Google Scholar 

  9. Horiuchi, H. et al. Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. J. Phys. Chem. B107, 2570–2574 (2003).

    Article  CAS  Google Scholar 

  10. Keis, K., Lindgren, J., Lindquist, S. E. & Hagfeldt, A. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir16, 4688–4694 (2000).

    Article  CAS  Google Scholar 

  11. Parks, G. A. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chem. Rev.65, 177–198 (1965).

    Article  CAS  Google Scholar 

  12. Shin, Y. J., Lee, J. H., Park, J. H. & Park, N. G. Enhanced photovoltaic properties of SiO2-treated ZnO nanocrystalline electrode for dye-sensitized solar cell. Chem. Lett.36, 1506–1507 (2007).

    Article  CAS  Google Scholar 

  13. Law, M. et al. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B110, 22652–22663 (2006).

    Article  CAS  Google Scholar 

  14. Greene, L. E., Law, M., Yuhas, B. D. & Yang, P. ZnO - TiO2 Core - Shell nanorod/P3HT solar cells. J. Phys. Chem. C111, 18451–18456 (2007).

    Article  CAS  Google Scholar 

  15. Memarian, N. et al. Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew. Chemie - Int. Ed.50, 12321–12325 (2011).

    Google Scholar 

  16. Akhtar, M. S. A Facile Synthesis of ZnO Nanoparticles and Its Application as Photoanode for Dye Sensitized Solar Cells. Sci. Adv. Mater.7, 1137–1142 (2015).

    Article  CAS  Google Scholar 

  17. Akhtar, M. S., Khan, M. A., Jeon, M. S. & Yang, O. B. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta53, 7869–7874 (2008).

    Article  CAS  Google Scholar 

  18. Ameen, S., Akhtar, M. S., Seo, H. K., Kim, Y. S. & Shin, H. S. Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chem. Eng. J.187, 351–356 (2012).

    Google Scholar 

  19. Jiang, C. Y., Sun, X. W., Lo, G. Q., Kwong, D. L. & Wang, J. X. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett.90, 3–6 (2007).

    Article  Google Scholar 

  20. Mou, J., Zhang, W., Fan, J., Deng, H. & Chen, W. Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells. J. Alloys Compd.509, 961–965 (2011).

    Article  CAS  Google Scholar 

  21. Lee, C. P. et al. Synthesis of hexagonal ZnO clubs with opposite faces of unequal dimensions for the photoanode of dye-sensitized solar cells. Phys. Chem. Chem. Phys.13, 20999–21008 (2011).

    Article  CAS  Google Scholar 

  22. Wang, Y., Cui, X., Zhang, Y., Gao, X. & Sun, Y. Preparation of Cauliflower-like ZnO Films by Chemical Bath Deposition: Photovoltaic Performance and Equivalent Circuit of Dye-sensitized Solar Cells. J. Mater. Sci. Technol.29, 123–127 (2013).

    Article  Google Scholar 

  23. Li, Z. et al. Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. J. Mater. Chem.22, 14341–14345 (2012).

    Article  CAS  Google Scholar 

  24. McCune, M., Zhang, W. & Deng, Y. High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with ‘caterpillar-like’ structure. Nano Lett.12, 3656–3662 (2012).

    Article  CAS  Google Scholar 

  25. Ameen, S., Shaheer Akhtar, M. & Shin, H. S. Growth and characterization of nanospikes decorated ZnO sheets and their solar cell application. Chem. Eng. J.195196, 307–313 (2012).

    Google Scholar 

  26. Wang, J. X. et al. Synthesis of hierarchical porous ZNO disklike nanostructures for improved photovoltaic properties of Dye-Sensitized solar cells. J. Phys. Chem. C114, 13157–13161 (2010).

    Article  CAS  Google Scholar 

  27. Kalyanasundaram, K. & Grätzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev.177, 347–414 (1998).

    Article  CAS  Google Scholar 

  28. O’Regan, B., Grätzel, M. A. Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature354, 56–58 (1991).

    Google Scholar 

  29. Barbé, C. J. et al. Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. J. Am. Ceram. Soc.80, 3157–3171 (2005).

    Article  Google Scholar 

  30. Fillinger, A. The Adsorption Behavior of a Ruthenium-Based Sensitizing Dye to Nanocrystalline TiO[sub 2] Coverage Effects on the External and Internal Sensitization Quantum Yields. J. Electrochem. Soc.146, 4559 (1999).

    Article  CAS  Google Scholar 

  31. Chai, S., Lau, T., Dayou, J., Sipaut, S. & Mansa, R. F. Development in Photoanode Materials for High Efficiency Dye Sensitized Solar Cells. vol. 4 (2014).

    Google Scholar 

  32. Valencia, S., Marín, J. M. & Restrepo, G. Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment. Open Mater. Sci. J.4, 9–14 (2010).

    Google Scholar 

  33. Chou, T. P., Zhang, Q., Russo, B., Fryxell, G. E. & Cao, G. Titania particle size effect on the overall performance of dye-sensitized solar cells. J. Phys. Chem. C111, 6296–6302 (2007).

    Article  CAS  Google Scholar 

  34. Bagheri, S., Mohd Hir, Z. A., Yousefi, A. T. & Abdul Hamid, S. B. Progress on mesoporous titanium dioxide: Synthesis, modification and applications. Microporous Mesoporous Mater.218, 206–222 (2015).

    Google Scholar 

  35. Muniz, E. C. et al. Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol-gel method for application in dye solar cells. Ceram. Int.37, 1017–1024 (2011).

    Article  CAS  Google Scholar 

  36. Alwin, S., Shajan, X. S., Karuppasamy, K. & Warrier, K. G. K. Microwave assisted synthesis of high surface area TiO2 aerogels: A competent photoanode material for quasi-solid dye-sensitized solar cells. Mater. Chem. Phys.196, 37–44 (2017).

    Article  CAS  Google Scholar 

  37. Hochbaum, A. I. & Yang, P. Semiconductor nanowires for energy conversion. Chem. Rev.110, 527–546 (2010).

    Article  CAS  Google Scholar 

  38. Chen, Y. et al. Effect of mesoporous TiO2 bead diameter in working electrodes on the efficiency of dye-sensitized solar cells. ChemSusChem4, 1498–1503 (2011).

    Google Scholar 

  39. Kao, M. C., Chen, H. Z., Young, S. L., Kung, C. Y. & Lin, C. C. The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells. Thin Solid Films517, 5096–5099 (2009).

    Article  CAS  Google Scholar 

  40. Dissanayake, L. & Thotawatthage, C. A. The effect of TiO2 photo anode film thickness on photovoltaic properties of dye-sensitized solar cells The effect of TiO 2 photoanode film thickness on photovoltaic properties of dye-sensitized solar cells. (2016) doi:https://doi.org/10.4038/cjs.v45i1.7362.

  41. Park, Y. C. et al. Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells. J. Mater. Chem.21, 9582–9586 (2011).

    Article  CAS  Google Scholar 

  42. Sun, X. et al. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO 2 based dye-sensitized solar cells. Appl. Surf. Sci.337, 188–194 (2015).

    Article  CAS  Google Scholar 

  43. Miao, Q., Wu, L., Cui, J., Huang, M. & Ma, T. A New Type of Dye-Sensitized Solar Cell with a Multilayered Photoanode Prepared by a Film-Transfer Technique. Adv. Mater.23, 2764–2768 (2011).

    Article  CAS  Google Scholar 

  44. Koo, H. J. et al. Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Adv. Mater.20, 195–199 (2008).

    Article  CAS  Google Scholar 

  45. Huang, F., Chen, D., Zhang, X. L., Caruso, R. A. & Cheng, Y. B. Dual-function scattering layer of submicrometer-sized mesoporous TiO 2 beads for high-efficiency dyesensitized solar cells. Adv. Funct. Mater.20, 1301–1305 (2010).

    Article  CAS  Google Scholar 

  46. Wu, W. Q., Xu, Y. F., Rao, H. S., Su, C. Y. & Kuang, D. Bin. A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells. Nanoscale5, 4362–4369 (2013).

    Google Scholar 

  47. Dong, Z. et al. Quintuple-shelled Sno2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater.26, 905–909 (2014).

    Article  CAS  Google Scholar 

  48. Yan, K., Qiu, Y., Chen, W., Zhang, M. & Yang, S. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy Environ. Sci.4, 2168–2176 (2011).

    Article  CAS  Google Scholar 

  49. Gao, Z. et al. Application of hierarchical TiO2 spheres as scattering layer for enhanced photovoltaic performance in dye sensitized solar cell. CrystEngComm15, 3351–3358 (2013).

    Google Scholar 

  50. Wu, W. Q., Xu, Y. F., Rao, H. S., Su, C. Y. & Kuang, D. Bin. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc.136, 6437–6445 (2014).

    Google Scholar 

  51. Yang, L. & Leung, W. W. F. Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv. Mater.23, 4559–4562 (2011).

    Article  CAS  Google Scholar 

  52. Wang, G., Zhu, X. & Yu, J. Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells. J. Power Sources278, 344–351 (2015).

    Article  CAS  Google Scholar 

  53. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science (80-. ).293, 269–271 (2001).

    Google Scholar 

  54. Mrowetz, M., Balcerski, W., Colussi, A. J. & Hoffmann, M. R. Oxidative power of nitrogen-doped TiO 2 photocatalysts under visible illumination. J. Phys. Chem. B108, 17269–17273 (2004).

    Article  CAS  Google Scholar 

  55. Hoye, R. L. Z., Musselman, K. P. & Macmanus-Driscoll, J. L. Research update: Doping ZnO and TiO2 for solar cells. APL Mater.1, (2013).

    Google Scholar 

  56. Duan, Y. et al. Sn-doped TiO 2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C116, 8888–8893 (2012).

    Article  CAS  Google Scholar 

  57. Ko, K. H., Lee, Y. C. & Jung, Y. J. Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions. J. Colloid Interface Sci.283, 482–487 (2005).

    Article  CAS  Google Scholar 

  58. Zhang, J. C. et al. N, S-doped TiO2 anode effect on performance of dye-sensitized solar cells. J. Phys. Chem. Solids72, 1239–1244 (2011).

    Article  CAS  Google Scholar 

  59. Berglund, S. P., Hoang, S., Minter, R. L., Fullon, R. R. & Mullins, C. B. Investigation of 35 elements as single metal oxides, mixed metal oxides, or dopants for titanium dioxide for dye-sensitized solar cells. J. Phys. Chem. C117, 25248–25258 (2013).

    Article  CAS  Google Scholar 

  60. Ma, T., Akiyama, M., Abe, E. & Imai, I. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett.5, 2543–2547 (2005).

    Article  CAS  Google Scholar 

  61. Tian, H. et al. Retarded charge recombination in dye-sensitized nitrogen-doped tio 2 solar cells. J. Phys. Chem. C114, 1627–1632 (2010).

    Article  CAS  Google Scholar 

  62. Fu, H., Zhang, L., Zhang, S., Zhu, Y. & Zhao, J. Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-chlorophenol. J. Phys. Chem. B110, 3061–3065 (2006).

    Article  CAS  Google Scholar 

  63. Etacheri, V., Seery, M. K., Hinder, S. J. & Pillai, S. C. Highly visible light active TiO2-xNx heterojunction photocatalysts. Chem. Mater.22, 3843–3853 (2010).

    Article  CAS  Google Scholar 

  64. Guo, W., Shen, Y., Boschloo, G., Hagfeldt, A. & Ma, T. Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells. Electrochim. Acta56, 4611–4617 (2011).

    Article  CAS  Google Scholar 

  65. Nah, Y.-C., Paramasivam, I. & Schmuki, P. Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications. ChemPhysChem11, 2698–2713 (2010).

    Google Scholar 

  66. Yang, M. et al. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commun.47, 2032–2034 (2011).

    Article  CAS  Google Scholar 

  67. Low, F. W. & Lai, C. W. Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev.82, 103–125 (2018).

    Article  CAS  Google Scholar 

  68. Batmunkh, M., Biggs, M. J. & Shapter, J. G. Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes. Adv. Sci.2, 1400025 (2015).

    Article  Google Scholar 

  69. Ting, C. C. & Chao, W. S. Efficiency improvement of the DSSCs by building the carbon black as bridge in photoelectrode. Appl. Energy87, 2500–2505 (2010).

    Article  CAS  Google Scholar 

  70. Kang, S. H., Kim, J. Y., Kim, Y. K. & Sung, Y. E. Effects of the incorporation of carbon powder into nanostructured TiO2 film for dye-sensitized solar cell. J. Photochem. Photobiol. A Chem.186, 234–241 (2007).

    Article  CAS  Google Scholar 

  71. Kim, D. Y. et al.The photovoltaic efficiencies on dye sensitized solar cells assembled with nanoporous carbon/tio 2 composites. J. Ind. Eng. Chem.18, 1–5 (2012).

    Article  CAS  Google Scholar 

  72. Yang, G. et al. Light scattering enhanced photoanodes for dye-sensitized solar cells prepared by carbon spheres/TiO2 nanoparticle composites. Curr. Appl. Phys.11, 376–381 (2011).

    Article  Google Scholar 

  73. Jang, Y. J., Jang, Y. H. & Kim, D. H. Carbohydrate-Derived Carbon Sheaths on TiO 2 Nanoparticle Photoanodes for Efficiency Enhancement in Dye-Sensitized Solar Cells. Part. Part. Syst. Charact.30, 1030–1033 (2013).

    Article  CAS  Google Scholar 

  74. Nissfolk, J., Fredin, K., Hagfeldt, A. & Boschloo, G. Recombination and transport processes in dye-sensitized solar cells investigated under working conditions. J. Phys. Chem. B110, 17715–17718 (2006).

    Article  CAS  Google Scholar 

  75. Cai, J. et al. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode. AIP Adv.5, 027118 (2015).

    Google Scholar 

  76. Liu, Y., Zhang, J., Cheng, Y. & Jiang, S. P. Effect of Carbon Nanotubes on Direct Electron Transfer and Electrocatalytic Activity of Immobilized Glucose Oxidase. ACS Omega3, 667–676 (2018).

    Article  CAS  Google Scholar 

  77. Peng, H., Sun, X., Weng, W. & Fang, X. Electronic Polymer Composite. in Polymer Materials for Energy and Electronic Applications 107–149 (Elsevier, 2017). doi:https://doi.org/10.1016/b978-0-12-811091-1.00004-5.

  78. Benetti, D. et al. Functionalized multi-wall carbon nanotubes/TiO2 composites as efficient photoanodes for dye sensitized solar cells. J. Mater. Chem. C4, 3555–3562 (2016).

    Google Scholar 

  79. Anusorn Kongkanand, Rebeca Martínez Domínguez, and & Kamat*, P. V. Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons. (2007) doi:https://doi.org/10.1021/NL0627238.

  80. Kim, S. G. et al. Nb-doped TiO2 nanoparticles for organic dye-sensitized solar cells. RSC Adv.3, 16380 (2013).

    Article  CAS  Google Scholar 

  81. Archana, P. S., Gupta, A., Yusoff, M. M. & Jose, R. Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells. Phys. Chem. Chem. Phys.16, 7448–7454 (2014).

    Article  CAS  Google Scholar 

  82. Wu, J. et al. Enhancement of the Photovoltaic Performance of Dye-Sensitized Solar Cells by Doping Y0.78Yb0.20Er0.02F3 in the Photoanode. Adv. Energy Mater.2, 78–81 (2012).

    Google Scholar 

  83. Zhang, J., Peng, W., Chen, Z., Chen, H. & Han, L. Effect of cerium doping in the TiO 2 photoanode on the electron transport of dye-sensitized solar cells. J. Phys. Chem. C116, 19182–19190 (2012).

    Article  CAS  Google Scholar 

  84. Kim, C., Kim, K. S., Kim, H. Y. & Han, Y. S. Modification of a TiO2 photoanode by using Cr-doped TiO 2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell. J. Mater. Chem.18, 5809–5814 (2008).

    Article  CAS  Google Scholar 

  85. Xie, Y. et al. Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes. J. Power Sources224, 168–173 (2013).

    Article  CAS  Google Scholar 

  86. Yang, S. et al. Improved efficiency of dye-sensitized solar cells applied with F-doped TiO2 electrodes. J. Fluor. Chem.150, 78–84 (2013).

    Article  CAS  Google Scholar 

  87. Mahmoud, M. S. et al. Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC. Mater. Lett.225, 77–81 (2018).

    Article  CAS  Google Scholar 

  88. Sun, Q. et al. Sulfur-doped TiO 2 nanocrystalline photoanodes for dye-sensitized solar cells. in Journal of Renewable and Sustainable Energy vol. 4 023104 (American Institute of PhysicsAIP, 2012).

    Google Scholar 

  89. Wang, M. et al. Improved photovoltaic performance of dye-sensitized solar cells by Sb-doped TiO 2 photoanode. Electrochim. Acta77, 54–59 (2012).

    Article  CAS  Google Scholar 

  90. Sakthivel, T., Kumar, K. A., Senthilselvan, J. & Jagannathan, K. Effect of Ni dopant in TiO2 matrix on its interfacial charge transportation and efficiency of DSSCs. J. Mater. Sci. Mater. Electron.29, 2228–2235 (2018).

    Article  CAS  Google Scholar 

  91. Zhu, G., Wang, H., Zhang, Q. & Zhang, L. Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes. J. Colloid Interface Sci.451, 15–20 (2015).

    Article  CAS  Google Scholar 

  92. Qin, Y. et al. Performance improvement of dye-sensitized solar cell by introducing Sm3 +/Y3 + co-doped TiO2 film as an efficient blocking layer. Thin Solid Films631, 141–146 (2017).

    Article  CAS  Google Scholar 

  93. Guai, G. H., Li, Y., Ng, C. M., Li, C. M. & Chan-Park, M. B. TiO2 Composing with Pristine, Metallic or Semiconducting Single-Walled Carbon Nanotubes: Which Gives the Best Performance for a Dye-Sensitized Solar Cell. ChemPhysChem13, 2566–2572 (2012).

    Google Scholar 

  94. Munkhbayar, B. et al. Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant. Powder Technol.234, 132–140 (2013).

    Article  CAS  Google Scholar 

  95. Dang, X. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol.6, 377–384 (2011).

    Article  CAS  Google Scholar 

  96. Balandin, A. A. et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett.8, 902–907 (2008).

    Article  CAS  Google Scholar 

  97. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater.6, 183–191 (2007).

    Article  CAS  Google Scholar 

  98. Sun, Y., Wu, Q. & Shi, G. Graphene based new energy materials. Energy Environ. Sci.4, 1113 (2011).

    Article  CAS  Google Scholar 

  99. Geim, A. K. Graphene: status and prospects. Science324, 1530–4 (2009).

    Article  CAS  Google Scholar 

  100. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics4, 611–622 (2010).

    Article  CAS  Google Scholar 

  101. Sacco, A. et al. Investigation of transport and recombination properties in graphene/titanium dioxide nanocomposite for dye-sensitized solar cell photoanodes. Electrochim. Acta131, 154–159 (2014).

    Article  CAS  Google Scholar 

  102. Song, J. et al. Enhancement of Photogenerated Electron Transport in Dye-Sensitized Solar Cells with Introduction of a Reduced Graphene Oxide-TiO2 Junction. Chem. - A Eur. J.17, 10832–10837 (2011).

    Google Scholar 

  103. Tang, Y. B. et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano4, 3482–3488 (2010).

    Article  CAS  Google Scholar 

  104. Batmunkh, M., Dadkhah, M., Shearer, C. J., Biggs, M. J. & Shapter, J. G. Incorporation of graphene into SnO 2 photoanodes for dye-sensitized solar cells. Appl. Surf. Sci.387, 690–697 (2016).

    Article  CAS  Google Scholar 

  105. Fan, J., Liu, S. & Yu, J. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO 2 nanosheets/graphene composite films. J. Mater. Chem.22, 17027–17036 (2012).

    Article  CAS  Google Scholar 

  106. Yang, N., Zhai, J., Wang, D., Chen, Y. & Jiang, L. Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. ACS Nano4, 887–894 (2010).

    Article  CAS  Google Scholar 

  107. Chen, T., Hu, W., Song, J., Guai, G. H. & Li, C. M. Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye-Sensitized Solar Cells. Adv. Funct. Mater.22, 5245–5250 (2012).

    Article  CAS  Google Scholar 

  108. Guo, W. et al. Rectangular bunched rutile TiO 2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J. Am. Chem. Soc.134, 4437–4441 (2012).

    Article  CAS  Google Scholar 

  109. Macdonald, T. J. et al. A TiO 2 Nanofiber-Carbon Nanotube-Composite Photoanode for Improved Efficiency in Dye-Sensitized Solar Cells. ChemSusChem8, 3396–3400 (2015).

    Google Scholar 

  110. Yen, M. Y. et al. Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon N. Y.49, 3597–3606 (2011).

    Google Scholar 

  111. Kilic, B. et al. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell. Sci. Rep.6, 27052 (2016).

    Article  CAS  Google Scholar 

  112. Golobostanfard, M. R. & Abdizadeh, H. Influence of carbon nanotube wall thickness on performance of dye sensitized solar cell with hierarchical porous photoanode. Microporous Mesoporous Mater.191, 74–81 (2014).

    Article  CAS  Google Scholar 

  113. Yang, L. & Leung, W. W. F. Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv. Mater.25, 1792–1795 (2013).

    Article  CAS  Google Scholar 

  114. Massihi, N., Mohammadi, M. R., Bakhshayesh, A. M. & Abdi-Jalebi, M. Controlling electron injection and electron transport of dye-sensitized solar cells aided by incorporating CNTs into a Cr-doped TiO2 photoanode. Electrochim. Acta111, 921–929 (2013).

    Article  CAS  Google Scholar 

  115. Golobostanfard, M. R. & Abdizadeh, H. Hierarchical porous titania/carbon nanotube nanocomposite photoanode synthesized by controlled phase separation for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells120, 295–302 (2014).

    Article  CAS  Google Scholar 

  116. Anjidani, M., Milani Moghaddam, H. & Ojani, R. Binder-free MWCNT/TiO2 multilayer nanocomposite as an efficient thin interfacial layer for photoanode of dye sensitized solar cell. Mater. Sci. Semicond. Process.71, 20–28 (2017).

    Google Scholar 

  117. Chan, Y. F., Wang, C. C., Chen, B. H. & Chen, C. Y. Dye-sensitized TiO2 solar cells based on nanocomposite photoanode containing plasma-modified multi-walled carbon nanotubes. Prog. Photovoltaics Res. Appl.21, 47–57 (2013).

    Article  CAS  Google Scholar 

  118. Tang, B. & Hu, G. Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell. J. Power Sources220, 95–102 (2012).

    Article  CAS  Google Scholar 

  119. Zhang, H. et al. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater. Res. Bull.49, 126–131 (2014).

    Article  CAS  Google Scholar 

  120. Tsai, C. H., Fei, P. H. & Wu, W. C. Enhancing the efficiency and charge transport characteristics of dye-sensitized solar cells by adding graphene nanosheets to TiO2 working electrodes. Electrochim. Acta165, 356–364 (2015).

    Article  CAS  Google Scholar 

  121. Wang, P., He, F., Wang, J., Yu, H. & Zhao, L. Graphene oxide nanosheets as an effective template for the synthesis of porous TiO 2 film in dye-sensitized solar cells. in Applied Surface Science vol. 358 175–180 (Elsevier B.V., 2015).

    Google Scholar 

  122. Zhu, M., Li, X., Liu, W. & Cui, Y. An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene-TiO2 composite photoanodes. J. Power Sources262, 349–355 (2014).

    Article  CAS  Google Scholar 

  123. He, Z. et al. Nanostructure control of graphene-composited TiO 2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. Nanoscale3, 4613–4616 (2011).

    Article  CAS  Google Scholar 

  124. Chen, L. et al. Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene-TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique. Nanoscale5, 3481–3485 (2013).

    Article  CAS  Google Scholar 

  125. Choi, H., Chen, W. T. & Kamat, P. V. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano6, 4418–4427 (2012).

    Google Scholar 

  126. Qi, J., Dang, X., Hammond, P. T. & Belcher, A. M. Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure. ACS Nano5, 7108–7116 (2011).

    Article  CAS  Google Scholar 

  127. Jeong, N. C., Prasittichai, C. & Hupp, J. T. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir27, 14609–14614 (2011).

    Article  CAS  Google Scholar 

  128. Xu, J. et al. G-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. J. Power Sources274, 77–84 (2015).

    Article  CAS  Google Scholar 

  129. Bella, F., Griffini, G., Gerosa, M., Turri, S. & Bongiovanni, R. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings. J. Power Sources283, 195–203 (2015).

    Article  CAS  Google Scholar 

  130. Griffini, G. et al. Multifunctional Luminescent Down-Shifting Fluoropolymer Coatings: A Straightforward Strategy to Improve the UV-Light Harvesting Ability and Long-Term Outdoor Stability of Organic Dye-Sensitized Solar Cells. Adv. Energy Mater.5, 1401312 (2015).

    Article  Google Scholar 

  131. Yuan, S., Tang, Q., He, B., Men, L. & Chen, H. Transmission enhanced photoanodes for efficient dye-sensitized solar cells. Electrochim. Acta125, 646–651 (2014).

    Article  CAS  Google Scholar 

  132. Gondal, M. A., Ilyas, A. M. & Baig, U. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification. Appl. Surf. Sci.378, 8–14 (2016).

    Article  CAS  Google Scholar 

  133. Kim, J. T., Lee, S. H. & Han, Y. S. Enhanced power conversion efficiency of dye-sensitized solar cells with Li 2 SiO 3 -modified photoelectrode. Appl. Surf. Sci.333, 134–140 (2015).

    Article  CAS  Google Scholar 

  134. Sabet, M., Salavati-Niasari, M. & Amiri, O. Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochim. Acta117, 504–520 (2014).

    Article  CAS  Google Scholar 

  135. Wang, Z. et al. Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell. A strategy of enhancing light harvest. J. Power Sources275, 175–180 (2015).

    Google Scholar 

  136. Kane, S. N., Mishra, A. & Dutta, A. K. Electrospinning Titanium Dioxide (TiO2) nanofiber for dye sensitized solar cells based on Bryophyta as a sensitizer. J. Phys. Conf. Ser.755, 3–10 (2016).

    Google Scholar 

  137. Yang, X., Zhao, L., Lv, K., Dong, B. & Wang, S. Enhanced efficiency for dye-sensitized solar cells with ZrO 2 as a barrier layer on TiO 2 nanofibers. Appl. Surf. Sci.469, 821–828 (2019).

    Article  CAS  Google Scholar 

  138. Cao, Y., Dong, Y. J., Feng, H. L., Chen, H. Y. & Kuang, D. Bin. Electrospun TiO2 nanofiber based hierarchical photoanode for efficient dye-sensitized solar cells. Electrochim. Acta189, 259–264 (2016).

    Google Scholar 

  139. Joshi, P. et al. Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy Environ. Sci.3, 1507–1510 (2010).

    Article  CAS  Google Scholar 

  140. Chuangchote, S., Sagawa, T. & Yoshikawa, S. Efficient dye-sensitized solar cells using electrospun Ti O2 nanofibers as a light harvesting layer. Appl. Phys. Lett.93, 2012–2015 (2008).

    Article  Google Scholar 

  141. Jung, W. H., Kwak, N. S., Hwang, T. S. & Yi, K. B. Preparation of highly porous TiO 2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl. Surf. Sci.261, 343–352 (2012).

    Article  CAS  Google Scholar 

  142. Lin, Y. P., Chen, Y. Y., Lee, Y. C. & Chen-Yang, Y. W. Effect of wormhole-like mesoporous anatase TiO 2 nanofiber prepared by electrospinning with ionic liquid on dye-sensitized solar cells. J. Phys. Chem. C116, 13003–13012 (2012).

    Article  CAS  Google Scholar 

  143. Mesoporous titania–vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells - IOPscience.

    Google Scholar 

  144. Zukalová, M. et al. Nanofibrous TiO2 improving performance of mesoporous TiO 2 electrode in dye-sensitized solar cell. J. Nanoparticle Res.15, 1–8 (2013).

    Article  Google Scholar 

  145. Wang, J. et al. Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer. J. Alloys Compd.551, 82–87 (2013).

    Article  CAS  Google Scholar 

  146. Huang, Q., Zhou, G., Fang, L., Hu, L. & Wang, Z. S. TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy Environ. Sci.4, 2145–2151 (2011).

    Article  CAS  Google Scholar 

  147. Zhang, Z., Hu, Y., Qin, F. & Ding, Y. DC sputtering assisted nano-branched core-shell TiO 2 /ZnO electrodes for application in dye-sensitized solar cells. Appl. Surf. Sci.376, 10–15 (2016).

    Article  CAS  Google Scholar 

  148. Sriharan, N., Ganesan, N. M., Kang, M., Kungumadevi, L. & Senthil, T. S. Improved photoelectrical performance of single crystalline rutile TiO2 nanorod arrays incorporating α-alumina for high efficiency dye-sensitized solar cells. Mater. Lett.237, 204–208 (2019).

    Article  CAS  Google Scholar 

  149. Lv, M. et al. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy Environ. Sci.6, 1615–1622 (2013).

    Article  CAS  Google Scholar 

  150. Zha, C. et al. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells. ACS Appl. Mater. Interfaces6, 122–129 (2014).

    Article  CAS  Google Scholar 

  151. Motonari Adachi, * et al. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the “Oriented Attachment” Mechanism. (2004) doi:https://doi.org/10.1021/JA048068S.

  152. Wang, W. et al. Effects of low pressure plasma treatments on DSSCs based on rutile TiO 2 array photoanodes. Appl. Surf. Sci.324, 143–151 (2015).

    Article  CAS  Google Scholar 

  153. Wu, W. Q., Xu, Y. F., Su, C. Y. & Kuang, D. Bin. Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy Environ. Sci.7, 644–649 (2014).

    Google Scholar 

  154. Wu, W. Q. et al. Hierarchical oriented anatase TiO2 nanostructure arrays on flexible substrate for efficient dye-sensitized solar cells. Sci. Rep.3, 1–7 (2013).

    Google Scholar 

  155. Sun, P. et al. Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye-sensitized solar cells: Enhanced cell performance via the rutile-anatase heterojunction. J. Mater. Chem. A1, 3309–3314 (2013).

    Article  Google Scholar 

  156. Sun, P. et al. Bilayer TiO2 photoanode consisting of a nanowire-nanoparticle bottom layer and a spherical voids scattering layer for dye-sensitized solar cells. New J. Chem.39, 4845–4851 (2015).

    Article  CAS  Google Scholar 

  157. Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K. & Grimes, C. A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells vol. 90 2011–2075 (2006).

    Article  CAS  Google Scholar 

  158. Zhou, Q., Fang, Z., Li, J. & Wang, M. Applications of TiO2 nanotube arrays in environmental and energy fields: A review. Microporous and Mesoporous Materials vol. 202 22–35 (2015).

    Article  CAS  Google Scholar 

  159. Flores, I. C. et al. Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte. J. Photochem. Photobiol. A Chem.189, 153–160 (2007).

    Article  CAS  Google Scholar 

  160. Park, H. et al. Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays. in Solar Energy Materials and Solar Cells vol. 95 184–189 (North-Holland, 2011).

    Google Scholar 

  161. Roy, P., Kim, D., Lee, K., Spiecker, E. & Schmuki, P. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale2, 45–59 (2010).

    Article  CAS  Google Scholar 

  162. Kim, D., Ghicov, A. & Schmuki, P. TiO2 Nanotube arrays: Elimination of disordered top layers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells. Electrochem. commun.10, 1835–1838 (2008).

    Google Scholar 

  163. Zhu, K., Neale, N. R., Miedaner, A. & Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett.7, 69–74 (2007).

    Article  CAS  Google Scholar 

  164. Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P. & Walker, A. B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons. J. Am. Chem. Soc.130, 13364–13372 (2008).

    Article  CAS  Google Scholar 

  165. Liu, Z. & Misra, M. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano4, 2196–2200 (2010).

    Article  CAS  Google Scholar 

  166. Kuo, C. G., Yang, C. F., Hwang, L. R. & Huang, J. S. Effects of titanium oxide nanotube arrays with different lengths on the characteristics of dye-sensitized solar cells. Int. J. Photoenergy2013, (2013).

    Google Scholar 

  167. Chen, W. C., Yeh, M. H., Lin, L. Y., Vittal, R. & Ho, K. C. Double-Wall TiO2 Nanotubes for Dye-Sensitized Solar Cells: A Study of Growth Mechanism. ACS Sustain. Chem. Eng.6, 3907–3915 (2018).

    Article  CAS  Google Scholar 

  168. Lee, C. H., Kim, K. H., Jang, K. U., Park, S. J. & Choi, H. W. Synthesis of TiO 2 Nanotube by Hydrothermal Method and Application for Dye-Sensitized Solar Cell. Mol. Cryst. Liq. Cryst.539, 125/[465]-132/[472] (2011).

    Google Scholar 

  169. Yu, J., Fan, J. & Lv, K. Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale2, 2144–2149 (2010).

    Article  CAS  Google Scholar 

  170. Zhu, H. et al. Growth of TiO 2 nanosheet-array thin films by quick chemical bath deposition for dye-sensitized solar cells. Appl. Phys. A Mater. Sci. Process.105, 769–774 (2011).

    Article  CAS  Google Scholar 

  171. Lee, C. S., Kim, J. K., Lim, J. Y. & Kim, J. H. One-step process for the synthesis and deposition of anatase, two-dimensional, disk-shaped TiO2 for dye-sensitized solar cells. ACS Appl. Mater. Interfaces6, 20842–20850 (2014).

    Article  CAS  Google Scholar 

  172. Shanmugam, M., Jacobs-Gedrim, R., Durcan, C. & Yu, B. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells. Nanoscale5, 11275–11282 (2013).

    Article  CAS  Google Scholar 

  173. Lin, J. et al. A Bi-layer TiO2 photoanode for highly durable, flexible dye-sensitized solar cells. J. Mater. Chem. A3, 4679–4686 (2015).

    Article  Google Scholar 

  174. Deepak, T. G. et al. Cabbage leaf-shaped two-dimensional TiO2 mesostructures for efficient dye-sensitized solar cells. RSC Adv.4, 27084–27090 (2014).

    Article  CAS  Google Scholar 

  175. Chen, B. et al. Graphene Oxide-Assisted Synthesis of Microsized Ultrathin Single-Crystalline Anatase TiO2 Nanosheets and Their Application in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces8, 2495–2504 (2016).

    Article  CAS  Google Scholar 

  176. Li, X., Yu, J. & Jaroniec, M. Hierarchical photocatalysts. Chemical Society Reviews vol. 45 2603–2636 (2016).

    Article  CAS  Google Scholar 

  177. Chen, H. Y., Kuang, D. Bin & Su, C. Y. Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry vol. 22 15475–15489 (2012).

    Google Scholar 

  178. Zhang, Q. & Cao, G. Hierarchically structured photoelectrodes for dye-sensitized solar cells. J. Mater. Chem.21, 6769–6774 (2011).

    Article  CAS  Google Scholar 

  179. Sanjay, P., Deepa, K., Madhavan, J. & Senthil, S. Performance of TiO2 based dye-sensitized solar cells fabricated with dye extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea as sensitizer. Mater. Lett.219, 158–162 (2018).

    Article  CAS  Google Scholar 

  180. Bahramian, A. High conversion efficiency of dye-sensitized solar cells based on coral-like TiO2 nanostructured films: Synthesis and physical characterization. Ind. Eng. Chem. Res.52, 14837–14846 (2013).

    Article  CAS  Google Scholar 

  181. Mali, S. S., Betty, C. A., Bhosale, P. N., Patil, P. S. & Hong, C. K. From nanocorals to nanorods to nanoflowers nanoarchitecture for efficient dye-sensitized solar cells at relatively low film thickness: All Hydrothermal Process. Sci. Rep.4, 2–9 (2014).

    Google Scholar 

  182. Su, C. et al. Preparation and characterization of pure rutile TiO2 nanoparticles for photocatalytic study and thin films for dye-sensitized solar cells. J. Nanomater.2011, (2011).

    Google Scholar 

  183. Fang, F., Kennedy, J., Manikandan, E., Futter, J. & Markwitz, A. Morphology and characterization of TiO 2 nanoparticles synthesized by arc discharge. Chem. Phys. Lett.521, 86–90 (2012).

    Article  CAS  Google Scholar 

  184. Liu, L., Yu, X. M., Zhang, B., Meng, S. X. & Feng, Y. Q. Synthesis of nano-TiO2 assisted by diethylene glycol for use in high efficiency dye-sensitized solar cells. Chinese Chem. Lett.28, 765–770 (2017).

    Article  CAS  Google Scholar 

  185. Hussian, H. A. R. A., Hassan, M. A. M. & Agool, I. R. Synthesis of titanium dioxide (TiO2) nanofiber and nanotube using different chemical method. Optik (Stuttg).127, 2996–2999 (2016).

    Google Scholar 

  186. Guo, H. et al. Facile synthesis of chrysanthemum flowers-like TiO2 hierarchical microstructures assembled by nanotube for high performance dye-sensitized solar cells. Org. Electron.55, 97–105 (2018).

    Article  CAS  Google Scholar 

  187. Luan, X., Guan, D. & Wang, Y. Facile synthesis and morphology control of bamboo-type TiO 2 nanotube arrays for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C116, 14257–14263 (2012).

    Article  CAS  Google Scholar 

  188. Mojaddami, M., Mohammadi, M. R. & Madaah Hosseini, H. R. Improved Efficiency of Dye-Sensitized Solar Cells Based on a Single Layer Deposition of Skein-Like TiO 2 Nanotubes . J. Am. Ceram. Soc.97, 2873–2879 (2014).

    Google Scholar 

  189. Roh, D. K., Chi, W. S., Jeon, H., Kim, S. J. & Kim, J. H. High efficiency Solid-state Dye-sensitized solar cells assembled with hierarchical anatase pine Tree-like TiO2 nanotubes. Adv. Funct. Mater.24, 379–386 (2014).

    Article  CAS  Google Scholar 

  190. Fan, K., Zhang, W., Peng, T., Chen, J. & Yang, F. Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C115, 17213–17219 (2011).

    Article  CAS  Google Scholar 

  191. Liu, Y. Y. et al. One-step hydrothermal fabrication of three dimensional anatase hierarchical hyacinth-like TiO2 arrays for dye-sensitized solar cells. Thin Solid Films683, 42–48 (2019).

    Article  CAS  Google Scholar 

  192. Tański, T. et al. Study of dye sensitized solar cells photoelectrodes consisting of nanostructures. Appl. Surf. Sci.491, 807–813 (2019).

    Article  Google Scholar 

  193. Wu, W. Q. et al. Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells. J. Power Sources260, 6–11 (2014).

    Article  CAS  Google Scholar 

  194. Wei, Z., Yao, Y., Huang, T. & Yu, A. Solvothermal growth of well-aligned TiO2 nanowire arrays for dye-sensitized solar cell: Dependence of morphology and vertical orientation upon substrate pretreatment. Int. J. Electrochem. Sci.6, 1871–1879 (2011).

    CAS  Google Scholar 

  195. Li, H. et al. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces8, 13384–13391 (2016).

    Article  CAS  Google Scholar 

  196. Li, Y. et al. Au nanoparticle-decorated urchin-like TiO2 hierarchical microspheres for high performance dye-sensitized solar cells. Electrochim. Acta293, 230–239 (2019).

    Article  CAS  Google Scholar 

  197. Marandi, M. & Bayat, S. Facile fabrication of hyper-branched TiO2 hollow spheres for high efficiency dye-sensitized solar cells. Sol. Energy174, 888–896 (2018).

    Article  CAS  Google Scholar 

  198. Liu, Y. et al. Synthesis of “lotus root”-like mesoporous titanium dioxide and its effects on UV response to aconitine release. J. Alloys Compd.777, 285–293 (2019).

    Article  CAS  Google Scholar 

  199. Hu, B. & Liu, B. Dye-sensitized solar cells fabricated by the TiO 2 nanostructural materials synthesized by electrospray and hydrothermal post-treatment. Appl. Surf. Sci.358, 412–417 (2015).

    Article  CAS  Google Scholar 

  200. Pan, H., Qian, J., Cui, Y., Xie, H. & Zhou, X. Hollow anatase TiO2 porous microspheres with V-shaped channels and exposed (101) facets: Anisotropic etching and photovoltaic properties. J. Mater. Chem.22, 6002–6009 (2012).

    Article  CAS  Google Scholar 

  201. Chen, Y. Z., Wu, R. J., Lin, L. Y. & Chang, W. C. Novel synthesis of popcorn-like TiO2 light scatterers using a facile solution method for efficient dye-sensitized solar cells. J. Power Sources413, 384–390 (2019).

    Article  CAS  Google Scholar 

  202. Zhang, J., He, X., Zhu, M., Guo, Y. & Li, X. The preparation of hierarchical rutile TiO2 microspheres constructed with branched nanorods for efficient dye-sensitized solar cells. J. Alloys Compd.747, 729–737 (2018).

    Article  CAS  Google Scholar 

  203. Xu, L. et al. Hierarchical submicroflowers assembled from ultrathin anatase TiO2 nanosheets as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells. J. Alloys Compd.776, 1002–1008 (2019).

    Article  CAS  Google Scholar 

  204. Ma, C. et al. Monodisperse TiO 2 microspheres assembled by porous spindles for high performance dye-sensitized solar cells. Colloids Surfaces A Physicochem. Eng. Asp.538, 94–99 (2018).

    Article  CAS  Google Scholar 

  205. Li, Z. Q. et al. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-sensitized Solar Cells with a High Efficiency Exceeding 11%. Sci. Rep.5, 1–8 (2015).

    Google Scholar 

  206. Beall, C., Piipari, K., Al-qassab, H. & Smith, M. A. Alkali-Corrosion Synthesis and Excellent DSSC Performance of a Novel Jujube-like Hierarchical TiO2 Microspheres. Biochem. J. 0–14 (2010).

    Google Scholar 

  207. Zhao, T. et al. Monodisperse mesoporous TiO2 microspheres for dye sensitized solar cells. Nano Energy26, 16–25 (2016).

    Article  CAS  Google Scholar 

  208. Li, Z. Q. et al. Fine Tuning of Nanocrystal and Pore Sizes of TiO 2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces7, 22277–22283 (2015).

    Article  CAS  Google Scholar 

  209. Hwang, S. H., Yun, J. & Jang, J. Multi-shell porous TiO2 hollow nanoparticles for enhanced light harvesting in dye-sensitized solar cells. Adv. Funct. Mater.24, 7619–7626 (2014).

    Article  CAS  Google Scholar 

  210. Jiang, J., Gu, F., Shao, W. & Li, C. Fabrication of spherical multi-hollow TiO 2 nanostructures for photoanode film with enhanced light-scattering performance. Ind. Eng. Chem. Res.51, 2838–2845 (2012).

    Article  CAS  Google Scholar 

  211. Lin, C. M. et al. Multi-step hydrothermally synthesized TiO 2 nanoforests and its application to dye-sensitized solar cells. Mater. Chem. Phys.135, 723–727 (2012).

    Article  CAS  Google Scholar 

  212. Ma, J., Ren, W., Zhao, J. & Yang, H. Growth of TiO2nanoflowers photoanode for dye-sensitized solar cells. J. Alloys Compd.692, 1004–1009 (2017).

    Article  CAS  Google Scholar 

  213. Javed, H. M. A. et al. Investigation on the surface modification of TiO2 nanohexagon arrays based photoanode with SnO2 nanoparticles for highly-efficient dye-sensitized solar cells. Mater. Res. Bull.109, 21–28 (2019).

    Article  CAS  Google Scholar 

  214. Umale, S., Sudhakar, V., Sontakke, S. M., Krishnamoorthy, K. & Pandit, A. B. Improved efficiency of DSSC using combustion synthesized TiO2. Mater. Res. Bull.109, 222–226 (2019).

    Article  CAS  Google Scholar 

  215. Amoli, V. et al. Tailored Synthesis of Porous TiO2 Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces7, 26022–26035 (2015).

    Article  CAS  Google Scholar 

  216. Chae, J. & Kang, M. Cubic titanium dioxide photoanode for dye-sensitized solar cells. J. Power Sources196, 4143–4151 (2011).

    Article  CAS  Google Scholar 

  217. Shuang, Y., Hou, Y., Zhang, B. & Yang, H. G. Impurity-free synthesis of cube-like single-crystal anatase TiO2 for high performance dye-sensitized solar cell. Ind. Eng. Chem. Res.52, 4098–4102 (2013).

    Article  CAS  Google Scholar 

  218. Li, Z. Q. et al. Solvothermal Synthesis of Hierarchical TiO2 Microstructures with High Crystallinity and Superior Light Scattering for High-Performance Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces9, 32026–32033 (2017).

    Article  CAS  Google Scholar 

  219. Qiu, Y., Chen, W. & Yang, S. Double-Layered Photoanodes from Variable-Size Anatase TiO2 Nanospindles: A Candidate for High-Efficiency Dye-Sensitized Solar Cells. Angew. Chemie122, 3757–3761 (2010).

    Article  Google Scholar 

  220. He, X., Li, X. & Zhu, M. The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells. J. Power Sources333, 10–16 (2016).

    Article  CAS  Google Scholar 

  221. Jeyaraman, A. R. et al. Enhanced solar to electrical energy conversion of titania nanoparticles and nanotubes-based combined photoanodes for dye-sensitized solar cells. Mater. Lett.243, 180–182 (2019).

    Article  CAS  Google Scholar 

  222. Marandi, M., Bayat, S. & Naeimi Sani Sabet, M. Hydrothermal growth of a composite TiO2 hollow spheres/TiO2 nanorods powder and its application in high performance dye-sensitized solar cells. J. Electroanal. Chem.833, 143–150 (2019).

    Google Scholar 

  223. Kim, J. S. et al. Facile Preparation of TiO2 Nanobranch/Nanoparticle Hybrid Architecture with Enhanced Light Harvesting Properties for Dye-Sensitized Solar Cells. J. Nanomater.2015, (2015).

    Google Scholar 

  224. Wang, Y., Yang, W. & Shi, W. Preparation and characterization of anatase TiO2 nanosheets-based microspheres for dye-sensitized solar cells. Ind. Eng. Chem. Res.50, 11982–11987 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by PPE Department, UET Lahore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umer Mehmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sufyan, M., Mehmood, U., Yasmeen, S., Gill, Y.Q., Sadiq, M., Ali, M. (2022). Metal-Oxide Semiconductor Nanomaterials as Alternative to Carbon Allotropes for Third-Generation Thin-Film Dye-Sensitized Solar Cells. In: Sahoo, S., Tiwari, S.K., Das, A.K. (eds) Defect Engineering of Carbon Nanostructures. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-94375-2_9

Download citation

Publish with us

Policies and ethics