Skip to main content

Advertisement

Log in

Effect of Ni dopant in TiO2 matrix on its interfacial charge transportation and efficiency of DSSCs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Employing the prepared pure TiO2 and Ni doped TiO2 as photoanode material, dye sensitized solar cells (DSSCs) are fabricated with ruthenium complex as dye-sensitizer [Cis-bis(isothiocyanato) bis(2, 2′-bipyridyl-4, 4′-dicarboxylato)ruthenium(II) also called as N3 dye] and LiI as redox electrolyte. In this concern, pure TiO2 and Ni–TiO2 are prepared through sol–gel technique. The structural, optical and electrical properties of the prepared materials are investigated using XRD, UV–Vis and impedance analyses respectively. The XRD pattern reveals pure crystalline anatase phase of pure TiO2 and Ni–TiO2 and the crystallite size was found to be in the range of 7–11 nm. UV–Vis spectroscopy shows the enhancement of absorption spectrum in UV region with red shift was observed by Ni doping. The electron transport properties of the prepared TiO2 and Ni doped TiO2 shows higher conductivity in 3% Ni doped TiO2 confirmed from impedance studies. The interfacial charge transport resistances and chemical capacitances of the fabricated DSSCs are evaluated from the EIS investigations and the photovoltaic performance of Ni doped TiO2 based DSSC shows enhanced efficiency up to 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, Solar photovoltaic electricity: current status and future prospects. Sol. Energy 85(8), 1580–1608 (2011). doi:10.1016/j.solener.2010.12.002

    Article  Google Scholar 

  2. M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. 4, 145–153 (2003). doi:10.1016/S1389-5567(03)00026-1

    Article  Google Scholar 

  3. P. Vijayakumar, M. Senthil Pandian, S.P. Lim, A. Pandikumar, N.M. Huang, S. Mukhopadhyay, P. Ramasamy, Facile synthesis of tungsten carbide nanorods and its application as counter electrode in dye sensitized solar cells. Mater. Sci. Semicond. Process. 39, 292–299 (2015). doi:10.1016/j.mssp.2015.05.023

    Article  Google Scholar 

  4. H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D.-R. Jung, B. Park, The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr. Appl. Phys. 12(3), 737–741 (2012). doi:10.1016/j.cap.2011.10.011

    Article  Google Scholar 

  5. B. O’Regan, M Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). doi:10.1038/353737a0

    Article  Google Scholar 

  6. S. Kundu, P. Sarojinijeeva, R. Karthick, G. Anantharaj, G. Saritha, R. Bera, S. Anandan, A. Patra, P. Ragupathy, M. Selvaraj, D. Jeyakumar, K.V. Pillai, Enhancing the efficiency of DSSCs by the modification of TiO2 photoanodes using N, F and S, co-doped graphene quantum dots. Electrochim. Acta 242, 337–343 (2017). doi:10.1016/j.electacta.2017.05.024

    Article  Google Scholar 

  7. K. Ashok Kumar, D. Ramesh, M. Gunaseelan, K. Subalakshmi, J. Senthilselvan, Structural, optical and impedance studies of hydrothermally and solvothermally prepared SnO2 nanocrystallites for conducting electrode application. Trans. Indian Inst. Met. 68(2), 221–225 (2015). doi:10.1007/s12666-015-0563-3

    Article  Google Scholar 

  8. S.P. Lim, A. Pandikumar, H.N. Lim, R. Ramaraj, N.M. Huang, Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N,S-Co-doped-TiO2 photoanode. Sci. Rep. 5, 1–14 (2015). doi:10.1038/srep11922

    Google Scholar 

  9. J.-Q. Bai, W. Wen, J.-M. Wu, Facile synthesis of Ni-doped TiO2 ultrathin nanobelt arrays with enhanced photocatalytic performance. CrystEngComm 18(10), 1847–1853 (2016). doi:10.1039/c6ce00015k

    Article  Google Scholar 

  10. R.S. Dubey, S. Singh, Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results Phys. (2017). doi:10.1016/j.rinp.2017.03.014

  11. L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.M. Patil, Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing. Sens. Actuators B 176, 514–521 (2013). doi:10.1016/j.snb.2012.08.030

    Article  Google Scholar 

  12. J.K. Salem, T.M. Hammad, R.R. Harrison, Synthesis, structural and optical properties of Ni-doped ZnO micro-spheres. J. Mater. Sci. 24(5), 1670–1676 (2013). doi:10.1007/s10854-012-0994-0

    Google Scholar 

  13. C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A 2(42), 17820–17827 (2014). doi:10.1039/c4ta04254a

    Article  Google Scholar 

  14. G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20(25), 5301–5309 (2010). doi:10.1039/c0jm00376j

    Article  Google Scholar 

  15. S.G. Babu, R. Vinoth, D. Praveen Kumar, M.V. Shankar, H.-L. Chou, K. Vinodgopal, B. Neppolian, Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production. Nanoscale 7(17), 7849–7857 (2015). doi:10.1039/c5nr00504c

    Article  Google Scholar 

  16. T. Sun, J. Fan, E. Liu, L. Liu, Y. Wang, H. Dai, Y. Yang, W. Hou, X. Hu, Z. Jiang, Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol. 228, 210–218 (2012). doi:10.1016/j.powtec.2012.05.018

    Article  Google Scholar 

  17. B. Parveen, M. Hassan, Z. Khalid, S. Riaz, S. Naseem, Room-temperature ferromagnetism in Ni-doped TiO2 diluted magnetic semiconductor thin films. J. Appl. Res. Technol. 15(2), 132–139 (2017). doi:10.1016/j.jart.2017.01.009

    Article  Google Scholar 

  18. D. Jing, Y. Zhang, L. Guo, Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem. Phys. Lett. 415(1–3), 74–78 (2005). doi:10.1016/j.cplett.2005.08.080

    Article  Google Scholar 

  19. Q. liu, D. Ding, C. Ning, X. Wang, Reduced N/Ni-doped TiO2 nanotubes photoanodes for photoelectrochemical water splitting. RSC Adv. 5(116), 95478–95487 (2015). doi:10.1039/c5ra21805e

    Article  Google Scholar 

  20. B. Gao, T. Wang, X. Fan, H. Gong, H. Guo, W. Xia, Y. Feng, X. Huang, J. He, Synthesis of yellow mesoporous Ni-doped TiO2 with enhanced photoelectrochemical performance under visible light. Inorg. Chem. Front. 4(5), 898–906 (2017). doi:10.1039/c6qi00609d

    Article  Google Scholar 

  21. R. Ghosh Chaudhuri, S. Paria, Visible light induced photocatalytic activity of sulfur doped hollow TiO2 nanoparticles, synthesized via a novel route. Dalton Trans. 43(14), 5526–5534 (2014). doi:10.1039/c3dt53311e

    Article  Google Scholar 

  22. M.T. Laranjo, N.C. Ricardi, L.T. Arenas, E.V. Benvenutti, M.C. de Oliveira, M.J.L Santos, T.M.H. Costa, TiO2 and TiO2/SiO2 nanoparticles obtained by sol–gel method and applied on dye sensitized solar cells. J. Sol-Gel. Sci. Technol. 72(2), 273–281 (2014). doi:10.1007/s10971-014-3341-5

    Article  Google Scholar 

  23. D. Arun Kumar, J. Merline Shyla, F.P. Xavier, Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications. Appl. Nanosci. 2(4), 429–436 (2012). doi:10.1007/s13204-012-0060-5

    Article  Google Scholar 

  24. S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 5(4), 449–456 (2015). doi:10.1007/s13204-014-0337-y

    Article  Google Scholar 

  25. H. Zhang, Z. Xing, Y. Zhang, Z. Li, X. Wu, C. Liu, Q. Zhu, W. Zhou, Ni2+ and Ti3+ co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Adv. 5(129), 107150–107157 (2015). doi:10.1039/c5ra23743b

    Article  Google Scholar 

  26. K. Ashok Kumar, J. Manonmani, J. Senthilselvan, Effect on interfacial charge transfer resistance by hybrid co-sensitization in DSSC applications. J. Mater. Sci. 25(12), 5296–5301 (2014). doi:10.1007/s10854-014-2304-5

    Google Scholar 

  27. R. Vinoth, P. Karthik, K. Devan, B. Neppolian, M. Ashokkumar, TiO2-NiO p-n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrason. Sonochem. 35(Pt B), 655–663 (2016). doi:10.1016/j.ultsonch.2016.03.005

    Google Scholar 

  28. K. Subalakshmi, K.A. Kumar, J. Senthilselvan, Reduction of 4-nitrophenol using electrocatalytic ZnS nanoparticles for counter electrode application in dye-sensitized solar cells. AIP Conf. Proc. 1832(1), 110057 (2017). doi:10.1063/1.4980681

    Article  Google Scholar 

  29. K.A. Kumar, K. Subalakshmi, J. Senthilselvan, Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications. J. Solid State Electrochem. 20(7), 1921–1932 (2016). doi:10.1007/s10008-016-3191-x

    Article  Google Scholar 

  30. K.A. Kumar, K. Subalakshmi, J. Senthilselvan, Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application. AIP Conf. Proc. 1731(1), 060017 (2016). doi:10.1063/1.4947823

    Article  Google Scholar 

  31. R. Govindaraj, M. Senthil Pandian, G. Senthil Murugan, P. Ramasamy, S. Mukhopadhyay, Synthesis of porous titanium dioxide nanorods/nanoparticles and their properties for dye sensitized solar cells. J. Mater. Sci. 26(4), 2609–2613 (2015). doi:10.1007/s10854-015-2731-y

    Google Scholar 

Download references

Acknowledgements

The author TS thank, SRM University for the research fellowship and thank CeNSE, IISc Bangalore, India for photovoltaic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannathan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, T., Kumar, K.A., Senthilselvan, J. et al. Effect of Ni dopant in TiO2 matrix on its interfacial charge transportation and efficiency of DSSCs. J Mater Sci: Mater Electron 29, 2228–2235 (2018). https://doi.org/10.1007/s10854-017-8137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8137-2

Navigation